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Summary

This thesis aims to provide a mathematical framework for the modeling and
analysis of open distributed parameter systems. From a mathematical point of
view this thesis merges the approach based on Hamiltonian modeling of open
distributed-parameter systems, employing the notion of port-Hamiltonian sys-
tems, with the semigroup approach of infinite-dimensional systems theory. The
Hamiltonian representation provides powerful analysis methods (e.g. for sta-
bility), and it enables the use of Lyapunov-stability theory and passivity-based
control. The semigroup approach has been widely applied in the analysis of dis-
tributed parameter systems and it has facilitated the extension of some notions
from finite-dimensional system theory to the infinite-dimensional case.

One of the key points of the port-Hamiltonian formulation is the structure of the
mathematical model obtained. By exploiting this structure, the port-Hamiltonian
approach allows to deal with classes of systems, which provide a relative new
point of view in the analysis of distributed parameter systems. In this thesis the
port-Hamiltonian formulation is mainly used for the analysis of 1D-boundary
control systems. These are systems in which the input (or part of it) acts on the
boundary of the spatial domain. In these cases it is possible to parameterize the
selection of the inputs (boundary conditions) and outputs by the selection of two
matrices in such a way that the resulting system is passive. In this case these ma-
trices determine the supply rate of the passive system, making it easy, in partic-
ular, to obtain impedance passive and scattering passive systems. In fact, as it is
shown, these matrices can be used to determine further properties of the system,
such as stability, controllability, and observability. Furthermore, it is shown that
this approach already covers a very large class of 1D-systems. This thesis treats
mainly two broad classes of systems. One corresponds to systems where the
dissipation phenomena is not present and the other includes systems with some
type of dissipation (e.g. heat or mass transfer, damping). These classes can, in
turn, be divided into subclasses according to the properties of the structure, to
provide further tools for the analysis of such systems.

Thus the structure of the resulting models forms the basis for the development
of general analysis (and control) techniques. In fact, it is shown that for some
classes of systems it is possible to easily determine some of their fundamental
properties (e.g. existence of solutions, stability, Riesz basis property). In this the-
sis we provide simple tools for the analysis of these properties for some classes
of systems.
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Samenvatting

Dit proefschrift probeert een wiskundige kader te geven voor de modellering
en de analyse van open verdeelde-parameter systemen. Vanuit een wiskundig
standpunt verbindt dit proefschrift de Hamiltoniaanse benadering van open
verdeelde-parameter systemen, gebruik makend van poort-Hamiltoniaanse
systemen, met de half-groep benadering uit de oneindig-dimensionale sys-
teemtheorie. De Hamiltoniaanse beschrijving geeft krachtige methodes voor
de analyse, bijvoorbeeld met betrekking tot de stabiliteit. Verder maakt het
een Lyapunov stabiliteitstheorie en een regelontwerp gebaseerd op passiviteit
mogelijk. De half-groep benadering is veel toegepast binnen de analyse van
oneindig-dimensionale systemen, en begrippen uit de eindig-dimensionale
systeemtheorie zijn uitgebreid naar deze klasse.

Eén van de kararakteristieken van poort-Hamiltoniaanse systemen is de struc-
tuur in het wiskundige model. Deze structuur maakt het mogelijk om een
klasse van systemen te beschouwen, en het geeft een nieuwe benadering voor
de analyse van verdeelde-parameter systemen. In het proefschrift wordt de
poort-Hamiltoniaanse benadering voornamelijk gebruikt voor de analyse van
1-D systemen met randbesturing. Dit zijn systemen waar de besturing werkt op
de rand van een eendimensionaal plaatselijk domein. Voor deze klasse is het
mogelijk om door middel van de keuze van twee matrices de in- en uitgangen
te selecteren opdat het systeem passief is. De matrices bepalen de expressie van
het toegeleverd vermogen van het systeem, en bepalen daarmee in welke zin
het systeem passief is. Verder tonen we aan dat deze matrices gebruikt kunnen
worden om andere systeemeigenschappen, zoals stabiliteit, regelbaarheid, en
waarneembaarheid, te bewijzen. Deze aanpak is toepasbaar op een zeer grote
klasse van 1-D systemen. Dit proefschrift behandelt twee ruime klassen van
systemen. De eerste klasse zijn systemen zonder interne dissipatie, en in de
tweede klasse is deze dissipatie wel aanwezig, bijvoorbeeld door warmte- of
massatransport, of door demping. Deze klassen kunnen op grond van hun struc-
tuureigenschappen verder opgedeeld worden. Dit geeft extra gereedschappen
voor de analyse van deze systemen.

Dus de structuur van de modellen vormt de basis voor de ontwikkeling van een
algemene techniek voor zowel de analyse als voor regelaarontwerp. In het bij-
zonder wordt aangetoond dat voor een deelklasse van systemen het mogelijk is
om op eenvoudige wijze fundamentele eigenschappen te bewijzen. Dit geldt on-
der andere voor eigenschappen zoals het bestaan van oplossingen, en het bezit-

ix



ten van een Riesz basis van eigenvectoren. In dit proefschrift ontwikkelen we
eenvoudige gereedschappen voor de analyse van onze klasse van systemen.

x
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Chapter 1

Introduction

The first part of this chapter provides a summary and background information
about the results. In the second part we present the structure of this book, and
highlight the contributions made in it.

In this chapter the reader might find a few terminologies that have not been ex-
plained or some ideas that appear vague. They will be explained later in the fol-
lowing chapters. They are included in this chapter for the ease and completeness
of presentation. For ease of reference there is included in this book a notation ta-
ble and an index where some terms and definitions can be found.

1.1. Motivation

In order to motivate and show the relevance of the theory presented in this book,
we give some simple examples of control problems that arise for distributed pa-
rameter systems, in particular boundary control systems.

Example 1.1 (Wave equation) Consider a vibrating string of length L = b − a,
held stationary at both ends and free to vibrate transversely subject to the restor-
ing forces due to tension in the string. The vibrations on the system can be mod-
eled by

∂2u

∂t2
(z, t) = c

∂2u

∂z2
(z, t), c =

T

ρ
, t ≥ 0, (1.1)

where z ∈ [a, b] is the spatial variable, u(z, t) is the vertical position of the string,
T (z) is the Young’s modulus of the string, and ρ(z) is the mass density. This
model is a simplified version of other systems where vibrations occur, as in the
case of large structures, and it is also used in acoustics. In this case, the control
problem is to damp out the vibrations on the string. One approach to do this is

1



1. Introduction

to add damping along the spatial domain. This can also be done by interacting
with the forces and velocities at the end of the string, i.e., at the boundary. ∗

Example 1.2 (Beam equations) In recent years the boundary control of flexible
structures has attracted much attention with the increase of high technology ap-
plications such as space science and robotics. In these applications the control of
vibrations is crucial. These vibrations can be modeled by beam equations. For
instance, the Euler-Bernoulli beam equation models the transversal vibration of an
elastic beam if the cross-section dimension of the beam is negligible in compar-
ison with its length. If the cross-section dimension is not negligible, then it is
necessary to consider the effect of the rotary inertia. In that case, the transversal
vibration is better described by the Rayleigh beam equation. An improvement over
these models is given by the Timoshenko beam, since it incorporates shear and ro-
tational inertia effects, which makes it a more precise model. These equations
are given, respectively, by

• Euler-Bernoulli beam:

ρ(z)
∂2w

∂t2
(z, t) +

∂2

∂z2

(
EI(z)

∂2w

∂z2
(z, t)

)
= 0, z ∈ (a, b), t ≥ 0,

where w(t, z) is the transverse displacement of the beam, ρ(z) is the mass
per unit length, E(z) is the Young’s modulus of the beam, and I(z) is the
area moment of inertia of the beam’s cross section.

• Rayleigh beam:

ρ(z)
∂2w

∂t2
(z, t) − Iρ(z)

∂2

∂t2

(
∂2w

∂z2
(z, t)

)
+

∂2

∂z2

(
EI(z)

∂2w

∂z2
(z, t)

)
= 0,

where z ∈ (a, b), t ≥ 0, w(t, z) is the transverse displacement of the beam,
ρ(z) is the mass per unit length, Iρ is the rotary moment of inertia of a
cross section, E(z) is the Young’s modulus of the beam, and I(z) is the area
moment of inertia.

• Timoshenko beam:

ρ(z)
∂2w

∂t2
(z, t) =

∂

∂z

[
K(z)

(
∂w

∂z
(z, t) − φ(z, t)

)]
, z ∈ (a, b), t ≥ 0,

Iρ(z)
∂2φ

∂t2
(z, t) =

∂

∂z

(
EI(z)

∂φ

∂z
(z, t)

)
+K(z)

(
∂w

∂z
(z, t) − φ(z, t)

)
,

where w(t, z) is the transverse displacement of the beam and φ(t, z) is the
rotation angle of a filament of the beam. The coefficients ρ(z), Iρ(z), E(z),
I(z), and K(z) are the mass per unit length, the rotary moment of inertia
of a cross section, Youngs modulus of elasticity, the moment of inertia of a
cross section, and the shear modulus respectively. ∗
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1.1. Motivation

Example 1.3 (Suspension system) Consider a simplified version of a suspen-
sion system described by two strings connected in parallel through a distributed
spring. This system can be modeled by

∂2u

∂t2
= c2

∂2u

∂z2
+ α(v − u)

∂2v

∂t2
= c2

∂2v

∂z2
+ α(u− v)

z ∈ (a, b), t ≥ 0, (1.2)

where c and α are positive constants and u(z, t) and v(z, t) describe the displace-
ment, respectively, of both strings. The use of this model has potential applica-
tions in isolation of objects from outside disturbances. As an example in engi-
neering, rubber and rubber-like materials are used to absorb vibration or shield
structures from vibration. As an approximation, these materials can be modeled
as a distributed spring. Modeling of structures such as beams, or plates sand-
wiched with rubber or similar materials, will lead to equations similar to those
in (1.2). Later we show that this system can be described as the interconnection
of three subsystems, i.e., two vibrating strings and one distributed spring. Seeing
the system as an interconnection of subsystems allows to have some modularity
in the modeling process, and because of this modularity, the modeling process
can be performed in an iterative manner, gradually refining the model by adding
other subsystems. ∗
Example 1.4 (Heat conduction) The model of heat conduction consists of only
one conservation law, that is the conservation of energy. It is given by the following
conservation law:

∂u

∂t
= − ∂

∂z
JQ, (1.3)

where u(z, t) is the energy density and JQ(z, t) is the heat flux. This conservation
law is completed by two closure equations. The first one expresses the calorimet-
ric properties of the material :

∂u

∂T
= cV (T ), (1.4)

where T (z, t) is the temperature distribution and cV is the heat capacity. The sec-
ond closure equation defines heat conduction property of the material (Fourier’s
conduction law):

JQ = −λ(T, z)
∂T

∂z
, (1.5)

where λ(T, z) denotes the heat conduction coefficient. Assuming that the varia-
tions of the temperature are not too large, one may assume that the heat capacity
and the heat conduction coefficient are independent of the temperature, one ob-
tains the following partial differential equation:

∂T

∂t
=

1

cV

∂

∂z

(
λ(z)

∂T

∂z

)
. (1.6)

∗
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1. Introduction

Example 1.5 (The fixed bed reactor) Another model that appears often in the lit-
erature is the tubular reactor, which appears in the study of some chemical pro-
cesses, see [Rut84] or [SMJ+99]. The main phenomena which takes place into the
reactor are the diffusion and the convection. In order to find the model we con-
sider the convection and diffusion of some species diluted in some neutral phase
in a tubular reactor. For the sake of simplicity we consider a single species. We
consider that the flow in the pipe is a steady laminar flow with constant temper-
ature and a parabolic radial velocity profile [BSL02]. This leads to express the
evolution of the mass density or equivalently the concentration of the species,
known as Taylor’s model of dispersion, as the following conservation law. The
conserved quantity is the concentration C(z, t) subject to the following balance
equation:

∂C

∂t
= − ∂

∂z
(βD + βC) (1.7)

where the flux is the sum βD, the flux variable associated with the dispersion
and βC , the flux variable describing the convection phenomena.

The flux βD associated with dispersion is defined by the closure equation:

βD = −D ∂

∂z
C (1.8)

where D denotes the dispersivity coefficient and is considered here constant (as-
suming that the the laminar flow is in steady state). It may be noted that this
flux is exactly analogous to the heat conduction flux (1.5). The flux βC associated
with the convection is:

βC = U C (1.9)

where U > 0 is the constant average axial velocity of the liquid. The conser-
vation law (1.7) with the two closure equations (1.8) and (1.9) leads to a partial
differential equation of the form

∂C

∂t
(t, z) =

∂

∂z

(
D
∂C

∂z
(t, z)

)
− U

∂C

∂z
(t, z). (1.10)

In a second instance let us assume that the considered species are subject to some
chemical reaction. And consider a linearized chemical kinetics

βK = −κC, (1.11)

where κ is some positive constant. This flux acts as a distributed source in the
mass balance equation (1.7) due to the reaction completes the conservation law
to the following balance equation :

∂C

∂t
= − ∂

∂z
(βD + βC) + βK (1.12)

4



1.2. Examples Revisited

Summarizing, we have the following model

∂C

∂t
(t, z) =

∂

∂z

(
D
∂C

∂z
(t, z)

)
− U

∂C

∂z
(t, z) − κC(t, z). (1.13)

∗

When analyzing all these models some (fundamental) “questions” (or points)
arise:

1. The first main question is that of existence and uniqueness of solutions.
That is, we need to check whether the system has a solution, and whether
that solution is unique. This leads, to the necessity of imposing boundary
conditions on the partial differential equation (PDE) governing the system.

2. The first point leads to the question of which boundary conditions we want
(or need) to impose on the system.

3. Since these systems can interact either with the environment or with other
systems, we want to consider them as open systems. As such, we need
to define what are the variables that the system will use to interact with
other systems. Therefore, we may also want to decide which of those vari-
ables will be considered as inputs and which as outputs. Note that the in-
teraction may also take place through the boundary of the spatial domain,
and thus the boundary variables (not to confuse with boundary conditions)
may also be used as interaction variables.

4. Once we have selected the inputs and outputs we can study the well-
posedness properties of the resulting system. Roughly speaking, this refers
to a continuity relation between the selected inputs and outputs with re-
spect to the internal variables of the system.

5. Finally, one can proceed to study further properties of the resulting system,
such as stability, controllability, and observability.

One can study these fundamental questions for each problem at hand, i.e., inde-
pendently for each system. However, in this book we do not want to deal with
these questions on a case-by-case basis. We want to look for a general structure
that these models may have and exploit that structure in order to try to solve the
questions above for a (possible large) class of systems. In the next section we
give more details on this.

1.2. Examples Revisited

In the previous section we mentioned that we want to deal with certain classes
of systems. We also mentioned that we want to do this by looking for a common

5



1. Introduction

structure in the models describing the dynamics of those systems. To motivate
this we start by reviewing the examples presented in the previous section.

In the first three examples, i.e, Example 1.1, 1.2, and 1.3, the energy of the sys-
tem can be described by a function. In addition, it can be shown that the rate of
change of this energy goes via the boundary of the spatial domain. This means
that there is no internal damping (or internal energy dissipation) in the system.
So we start by looking for a common structure for systems that share this prop-
erty. That is, we first start with systems where there is no internal energy dissi-
pation. A common approach to start this analysis is to rewrite the model as an
evolution equation. That is, as an equation of the form

dx

dt
(t) = Ax(t), x(0) = x0, t ≥ 0

where x is called the state variable and lies in the state space X , and A is an
operator with its domain contained in X . The next example may help to clarify
all this.

Example 1.6 Consider the vibrating string of Example 1.1. The energy of the
system is given by

E(p, q) =
1

2

∫ b

a

(
1

ρ
|p|2 + T |q|2

)
dz, (1.14)

where q(z, t) = ∂u
∂z (z, t) is the strain and p(z, t) = ρ∂u

∂t (z, t) is the momentum
distribution. In order to study the properties of the system, we rewrite equa-
tion (1.1) as a first order (in time) system. One way to do this is by selecting the
energy variables, i.e., p and q, as the state variables and the state space is selected
as X = L2(a, b)

2 with inner product 〈·, ·〉L given by

〈x,w〉L =

〈[
ρ−1 x1

T x2

]
,

[
w1

w2

]〉
, ∀x =

[
x1

x2

]
, w =

[
w1

w2

]
∈ L2(a, b)

2.

Here 〈·, ·〉 is the standard L2-inner product, i.e., 〈·, ·〉 =
∫ b

a
(·)T (·) dz. The selection

of 〈·, ·〉L as the inner product is valid since ρ and T are assumed to be positive
bounded functions. Observe now that the norm on this state space becomes the
energy of the system, see (1.14). Indeed, if we let x = [ p

q ] we obtain

‖x‖2
L = 〈x, x〉L =

〈[
ρ−1 p
T q

]
,

[
p
q

]〉
= E(p, q).

This is the main reason for selectingX = L2(a, b)
2 (with the inner product 〈·, ·〉L)

as the state space, so that its norm corresponds to the expression representing the
energy (in terms of the selected state variables). In this case, X is usually known
as the energy state space.

6
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Using q(z, t) = ∂u
∂z (z, t) and p(z, t) = ρ∂u

∂t (z, t), we can rewrite the wave equa-
tion (1.1) as follows

∂

∂t

[
p
q

]

︸ ︷︷ ︸
x

(z, t) =

[
0 1
1 0

]
∂

∂z︸ ︷︷ ︸
J

[ 1
ρp

Tq

]

︸ ︷︷ ︸
Lx

(z, t). (1.15)

We can regard this as an evolution equation whose operator can be seen as the
composition of two operators, namely J and L. The operator L contains the
parameters of the system, whereas the operator J can be shown to capture the
internal geometric structure of the system. Now we can see that this model of

the system has certain structure, that is, L =
[

ρ−1 0
0 T

]
is bounded, symmetric and

positive, and the operator J can be written as a matrix times ∂
∂z , which in this

case is J = P1
∂
∂z where the matrix P1 is symmetric. This gives immediately that

the operator J is formally skew-adjoint, as will be seen in the next chapter. Ac-
tually, the fact that J is formally skew-adjoint1 gives (assuming differentiability
of x)

∂

∂t
E =

1

2

∂

∂t
〈x, x〉L =

1

2

〈
∂x

∂t
,Lx

〉
+

1

2

〈
Lx, ∂x

∂t

〉

=
1

2
〈J Lx,Lx〉 +

1

2
〈Lx,JLx〉 = 0, (1.16)

where we have used (1.15). This shows that the rate of change of the energy
is zero if the boundary variables are zero. This in turn, implies that there is no
internal energy dissipation. Note that this last property depends only on J and
not on L. ∗

Remark 1.7. Note that Lx =
[

1
ρ p

Tq

]
equals the variational derivative, see page 14,

of the energy E. The variables in Lx are sometimes called co-energy variables
since they satisfy 〈ẋ,Lx〉 = dE

dt . Furthermore, J is a formally skew-adjoint op-
erator. In this case, this differential operator corresponds to the expression of
a canonical interdomain coupling between the elastic energy domain and the
kinetic energy domain. This implies, by the skew-symmetry of J , that the elas-
tic energy is transformed into kinetic energy and viceversa, thus maintaining
the total energy conserved. This is an intrinsic property of this class of skew-
symmetric operators. We shall discuss more about this in the next chapter. ♣

The above example shows that based on the energy function we can obtain a
model with certain structure. Later we shall show that these ideas applied to
the beam equation and the suspension system lead to systems with a similar

1A differential operator J on H is formally skew-adjoint if it satisfies 〈J x, x〉H = −〈x,J x〉H for all
x with all boundary variables set to zero.

7



1. Introduction

structure. Note that there are two main advantages in doing this. One is that
the norm of the state space equals the energy function. And the other is that the
operator describing the evolution of the system can be split into two parts, each
of them with certain structure. Furthermore, each of these operators captures
different properties of the system. Also, by following the modeling process we
have that one first arrives at equation (1.15) and from this the model (1.1) is
obtained, see Example 7.8. So, from a modeling point of view, it seems more
natural to work with model (1.15).

Remark 1.8. Readers familiar with the ideas presented in Example 1.6 will note
that typically the state variables (for the wave equation) are selected as the po-
sition u(z, t) and the velocity du

dt (z, t) instead of the strain and the momentum.
This leads to the selection of a state space whose inner product involves deriva-
tives (with respect to z), see [CZ95b]. In that case one does not obtain a model
with the structure described above. ♣

1.3. A class of PDE

Following the previous section we can see that it is possible to describe a class of
systems by a PDE with the following structure

∂x

∂t
(t, z) = JLx(t, z), (1.17)

where L is a bounded coercive operator on X = L2(a, b; R
n), and the differential

operator J is given by

J e =

N∑

i=0

Pi
∂ie

∂zi
, (1.18)

with Pi, i = {1, 2, . . . , N}, constant matrices of size n × n, and x(t, z) ∈ R
n.

Usually in applications L is a multiplication operator, i.e., (Lx)(z) = L(z)x(z).
Furthermore, we assume that

Pi = (−1)i+1PT
i , i = 0, 1, . . . , N. (1.19)

The condition above implies that the differential operator J is formally skew-
adjoint, see Chapter 2. Furthermore, we choose the norm of the state space to
match the expression for the energy function which typically is described by the
Hamiltonian function

E =
1

2
〈x,Lx〉 , for x ∈ L2(a, b)

n.

Thus, from Example 1.6, we can see that the vibrating string falls into this class of
systems, as well as the beam equation of Example 1.2 and the suspension system

8



1.4. A class of PDE with dissipation

of Example 1.3. Hence, we can see that there is a variety of systems that are
described by this class of PDEs.

Since J is skew-symmetric one obtains (formally) that the rate of change of the
energy is zero, (see (1.16)). This is a property of the skew-symmetry of this oper-
ator. In fact, later it is shown that the energy preserving structure of the system is
based on the operator J . On the other hand the operator L captures the intrinsic
properties of the system such as material properties, dimensions, and so forth.

Note however, that this class of systems does not cover Example 1.4 and the
fix bed reactor of Example 1.5. In the next section we generalize this class of
systems to cover those examples, and in general a larger class of systems, which
also includes diffusion systems.

1.4. A class of PDE with dissipation

In the previous section we introduced a class of systems with no internal en-
ergy dissipation. In this section we consider a larger class of systems which can
include this phenomena. Based on (1.17) we just add another operator that ex-
presses the energy dissipation part of the system as follows

∂x

∂t
(t, z) = (J − GRSG∗

R)Lx(t, z) (1.20)

where J and L were described in the previous section and S is a coercive oper-
ator on L2(a, b; R

m). The differential operators GR and its formal adjoint G∗
R are

given by

GRx =

N∑

i=0

Gi
∂ix

∂zi
, G∗

Rx =

N∑

i=0

(−1)iGT
i

∂ix

∂zi
, (1.21)

where Gi, i = {1, 2, . . . , N}, are n×m constant matrices. The following example
motivates the selection of this class of systems.

Example 1.9 Consider the fixed-bed reactor of Example 1.5. The system without
chemical reaction is described by the PDE (1.10) and in this case we have that
the skew-symmetric operator is J = −U ∂

∂z and is associated with the convec-

tion. In a similar way as for the heat conduction, GR = ∂
∂z expresses both spatial

derivatives related to the conservation law (1.7) and the definition of the disper-
sion flux (1.8). The operator S = D is the dispersitivity coefficient and is positive
according to the second principe of Thermodynamics. The operator L is simply
the identity as the driving force for both phenomena may be reduced to the con-
centration. Once these operators are identified it is easy to see that the system is
described by the PDE (1.20).

9



1. Introduction

Consider now the fixed bed reactor equation (1.13). In this case we define the
operator GR by

GR =
[

∂
∂z 1

]
, with G∗

R =

[
− ∂

∂z
1

]
,

and the symmetric operator associated with the parameters of the law of fluxes
becomes

S =

[
D 0
0 κ

]
. ∗

Observe that Sturm-Liouville systems, see [NS00], are a special class of this type
of equations, choose n = m = 1. In general, this is a large class of systems
including, among others, diffusion systems as well as flexible structures with or
without damping.

Since the operator J is assumed to be skew-symmetric and S coercive, we have
that the energy of the system satisfies formally (compare with (1.16))

1

2

∂

∂t
〈x, x〉L =

1

2

〈
∂x

∂t
,Lx

〉
+

1

2

〈
Lx, ∂x

∂t

〉

= −〈G∗
RLx, SG∗

RLx〉 ≤ 0, (1.22)

which shows that there is energy dissipation. Note however, that equation (1.16)
and (1.22) hold formally. Strictly speaking one has to consider the boundary vari-
ables, in particular, if we want to consider open systems as described in item 3
on page 5. In this case, one has

∂

∂t
〈x,Lx〉 = −〈G∗

RLx, SG∗
RLx〉 + (function of boundary variables).

This brings us to one of the fundamental questions on page 5. How to select the
boundary conditions of the system in such a way that the energy of the system
(and hence the system itself) has certain behavior. Typically, it is desired that
the rate of change of the energy is less than or equal to zero, i.e., ∂

∂t 〈x,Lx〉 = 0
(or ≤ 0). This behavior can also be influenced by applying an input function to
the system (either through the boundary or along the spatial domain). Thus, as
mentioned in item 3 on page 5, we can also consider inputs and outputs acting
through the boundary of the spatial domain.

Summarizing, we want to study the fundamental questions on page 5 for a class
of distributed parameter linear systems with a special structure, which occur
often in applications. These systems are described by

∂x

∂t
(t, z) = (J − GRSG∗

R)Lx(t, z), x(0, z) = x0(z), (1.23a)

u(t) = Bx(t, z), z ∈ (a, b), t ≥ 0 (1.23b)

y(t) = Cx(t, z), (1.23c)
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1.4. A class of PDE with dissipation

where u(t) is the input function, y(t) is the output, S and L are coercive operators
on L2(a, b; R

m) and X = L2(a, b; R
n), respectively, and B and C are (boundary)

operators that depend linearly on the boundary variables of x. Thus the input
and output act on the boundary of the spatial domain (a, b). The differential
operators J and GR are given by

J x =

N∑

i=0

Pi
∂ix

∂zi
, GRx =

N∑

i=0

Gi
∂ix

∂zi
, G∗

Rx =

N∑

i=0

(−1)iGT
i

∂ix

∂zi
, (1.24)

with G∗
R being the formal adjoint operator of GR and Gi, Pi, i = {1, 2, . . . , N}, are

constant real matrices of size n×m, and n× n, respectively. Furthermore, these
matrices satisfy

Pi = (−1)i+1PT
i , i = 0, 1, . . . , N. (1.25)

In the next chapter we describe how to select the boundary operators B and C
such that an answer to the first three points on page 5 can be given. In particular,
we want to obtain a system whose energy is nonincreasing when the input is set
to zero.

The motivation for considering the class of systems defined in (1.23) arises from
the consideration of systems of conservation laws appearing in the modeling of
physical systems, see Section 1.1 and 1.2. In the case when the differential opera-
tor consists only of the skew-symmetric term J , i.e., S = 0, the system (1.23) may
be related to Hamiltonian systems [Olv93] and a port-Hamiltonian formulation
has been given in [vdSM02], [MvdS05], and [LZM05]. In this case, the system
(1.23) corresponds to the model of a physical system where all the dissipative
phenomena have been neglected. However, systems of conservation laws may
of course also represent physical systems where the dissipative phenomena play
an essential role as for instance the mass and heat transfer phenomena [BSL02].

Thus we use the port-Hamiltonian approach. This approach has been introduced
as a geometric framework for the modeling and control of physical systems,
which is based on a combination of the Hamiltonian approach and Network
theory. The key idea is to associate with the energy interconnection structure a
geometric object, called Dirac structure. In terms of the vibrating string example,
one can see that the model is split in two parts, see (1.15). The part corresponding
to the operator J describes the geometric structure of the system and is related to
the Dirac structure. That is, J expresses how the internal components that com-
prise the system are interconnected among each other. On the other hand, the
part described by L contains intrinsic properties of those components compris-
ing the system. This allows the study of some properties (not all) of the system
by using the (simpler) model with L = I , see Chapter 2 for more details.

The rest of this chapter is dedicated to present some background information on
the ideas that will be used later.
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1.5. Boundary Control Systems (BCS)

In order to deal with the fundamental questions on page 5, we need to define
a general setting on which we will be working. In this section we describe the
general setting on which we try to solve the first two items of our fundamental
questions. That is, from a PDE point of view we need to have existence and
uniqueness of solutions, and we need to set the right boundary conditions. From
a system point of view, we need to select the right variables as inputs.

In the previous sections it was mentioned that it is possible to control the behav-
ior of the system by entering a signal through the boundary. This can be done in
general for many applications. However, there are several things that need to be
checked in order that the system is well formulated in certain sense. Below we
clarify what we mean by a boundary control system.

In general, the class of BCS described here is based on [CZ95b, §3.3]. That is, BCS
of the form

ẋ(t) = Ax(t), x(0) = x0,

u(t) = Bx(t), (1.26)

where A : D(A) ⊂ X → X , u(t) ∈ U , X and U separable Hilbert spaces, and the
boundary operator B : D(B) ⊂ X → U satisfying D(A) ⊂ D(B), and

Definition 1.10. The control system (1.26) is a boundary control system if the fol-
lowing hold:

a. The operator A : D(A) → X with D(A) = D(A) ∩ ker(B) and

Ax = Ax for x ∈ D(A)

is the generator of a C0-semigroup on X .

b. There exists an R ∈ L(U,X) such that for all u ∈ U , Ru ∈ D(A), the
operator AR is an element of L(U,X) and BRu = u for u ∈ U . ♣

In our case, condition a. means that if the input is set to zero, then the resulting
PDE with boundary conditions Bx(t) = 0 has a unique (classical or weak) solu-
tion. Condition b. implies that the operator B is surjective, meaning that “any”
function in the input space U can be applied to the system. The operator R can
be considered as a right inverse of B.

Example 1.11 Consider the vibrating string described in Example 1.6 with the
following boundary conditions

∂u

∂t
(a, t) = 0, T

∂u

∂z
(b, t) − α

∂u

∂t
(b, t) = f(t), (1.27)

12
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where α is a positive constant and f(t) is an input function. This implies that the
string is clamped at the left (z = a) and damping is applied on the right (z = b).
In this case we have, see (1.15), x = [ p

q ], A = JL with ∂u
∂t (a) = (ρ−1p)(a) = 0,

Bx =
∂u

∂z
(b) − α

∂u

∂t
(b) = (Tq)(b) − α(ρ−1p)(b), u(t) = f(t),

the state space is X = L2(a, b)
2, and D(A) = D(B) = H1(a, b)2. In this case the

semigroup generator A is given by

A = JL, D(A) = {x ∈ H1(a, b)2 | (ρ−1p)(a) = 0, (Tq)(b) − α(ρ−1p)(b) = 0}.

Later we show that this is a boundary control system in the sense of Defini-
tion 1.10. ∗

1.6. General notation

In this book we try to follow a standard notation that is commonly found in the
literature. As usual, R and R+ denote the vector space of real and positive real
numbers, respectively. L2(a, b,R

n) (denoted also by = L2(a, b)
n) is the standard

vector space of square integrable functions on R
n with inner product denoted

sometimes by 〈·, ·〉L2(a,b,Rn) or 〈·, ·〉L2
. However, in this book we simply denote

it by 〈·, ·〉 when no confusion may arise. Similarly, its norm is denoted by either
‖·‖L2

or simply by ‖·‖. Also, Hm(a, b,Rn) or Hm(a, b)n denotes the standard
Sobolev space of order m. Its inner product is denoted by 〈·, ·〉HN (a,b)n or simply

by 〈·, ·〉HN (a,b). Let Ω be an open set in R
d. Here D(Ω) is the space of all indefi-

nitely differentiable functions with a compact support in Ω. If H is any Hilbert
space, then we denote by 〈·, ·〉H its inner product and by ‖·‖H its induced norm.
By 〈〈·, ·〉〉H we denote the duality product between H and its dual H ′. In gen-
eral, for the Hilbert space Hn = H × · · · ×H we denote, for simplicity, its inner
product by either 〈·, ·〉Hn or 〈·, ·〉H , its norm by either ‖·‖Hn or ‖·‖H , and the du-
ality product between Hn and its dual by either 〈〈·, ·〉〉Hn or simply 〈〈·, ·〉〉H . In
particular, the inner product in R

n is sometimes denoted by 〈·, ·〉
R

, and similarly
for its norm, i.e, ‖·‖

R
.

IfX and Y are normed linear spaces, we denote by L(X,Y ) the space of bounded
linear operators from X to Y with domain equal to X . If X = Y we simply write
L(X). Similarly, we denote byMn×m(Y ) the set of n×mmatrices with entries in
the space Y and in the case n = m we simply write Mn(Y ). We sometimes write
R

n×m in the case Y = R. If T is a linear operator we denote by ρ(T ) its resolvent
set and by σ(T ) its spectrum. Also T|H denotes the restriction of T to the space
H . A self-adjoint operator, L, is coercive on X if there exists an ε > 0 such that

〈Lx, x〉X = 〈x,Lx〉X ≥ ε ‖x‖2
X > 0 for all x ∈ D(L), (1.28)
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i.e., L has a bounded inverse. By IX we denote the identity operator on X .
However, we usually write I if it is obvious on which space is defined.

The derivative of a function x : (a, b) → R with respect to the variable s is
denoted by dx

ds . By ∂w
∂x1

we denote the partial derivative with respect to x1. When
convenient, we also use the notation ∂x1

w. If the function w depends on time,
ẇ will also denote the time derivative. The variational derivative of the function
H(x) is the unique smooth function denoted by δ H

δ x such that

H(x+ εη) = H(x) + ε

∫ b

a

δ H

δ x
· η dz + O(ε2), (1.29)

for any ε ∈ R and any smooth function η(z, t), see [Olv93]. For instance, consider
the function

H(x) =
1

2

∫ b

a

xT (z) (Lx)(z) dz, (1.30)

where x ∈ L2(a, b; R
n) and L is a coercive operator on L2(a, b; R

n). For H(x) we
have

H(x+ εη) =
1

2

∫ b

a

(x+ εη)T L (x+ εη) dz

=
1

2

∫ b

a

(
xTLx+ ε(xTL η + ηTLx) + ε2ηTL ηT

)
dz

= H(x) + ε

∫ b

a

ηTLx dz + O(ε2). (1.31)

From this we conclude that δ H
δ x (x) = Lx.

1.7. Dirac structures and port-Hamiltonian systems
(PHS)

Here we give a simple definition of a Dirac structure and port-Hamiltonian sys-
tems, see for instance [vdS00], [vdSM02] or [LZM05] for a more precise definition
and further details. Let F , called the flow space, represent the space of rate energy
variables, or in the bond-graph notation, flows. Correspondingly there exists the
effort space, E , which is the space of co-energy variables, or in the bond-graph
notation, efforts. In the lumped-parameter finite-dimensional case the space of
flows and the space of efforts simply correspond to a vector space and its dual;
where the duality can be seen as ‘power’ duality, in the sense that the duality
product of an element of the flow space with an element of the effort space re-
sults in physical power. In the distributed parameter case the space of flows F is
an infinite-dimensional Hilbert space, and the space of efforts E can be defined
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to be (see [vdSM02]) a dual space to the space of flows, i.e., E = F ′, with the
duality product defined to be equal to physical power. We denote by 〈. , .〉F and
〈. , .〉E , their corresponding inner products, respectively. Define now the space of
bond variables, also called bond space, as the Hilbert space B = F × E endowed
with the natural inner product:

〈
b1, b2

〉
B =

〈
f1, f2

〉
F +

〈
e1, e2

〉
E

for all b1 =
(
f1, e1

)
∈ B, b2 =

(
f2, e2

)
∈ B. In order to define a Dirac structure,

we endow the bond space B with a canonical symmetric pairing, i.e., a bilinear
form defined for b1 =

(
f1, e1

)
, b2 =

(
f2, e2

)
∈ B as follows:

〈
b1, b2

〉
+

=
〈〈
f1, e2

〉〉
E +

〈〈
f2, e1

〉〉
E , (1.32)

where 〈〈·, ·〉〉X denotes the duality product on X ×X ′, i.e., 〈〈f, x〉〉X = f(x) for
f ∈ X ′ and x ∈ X , where the duality can be seen as power.

We define a Dirac structure on the bond space B by using this canonical pair-
ing (1.32). Denote by D⊥ the orthogonal subspace to D with respect to the sym-
metrical pairing (1.32):

D⊥ =
{
b ∈ B | 〈b, b′〉+ = 0, ∀ b′ ∈ D

}
. (1.33)

Definition 1.12. [vdSM02]. A Dirac structure D on the bond space B = F × E is
a subspace of B which satisfies

D⊥ = D, (1.34)

where the orthogonal complement is with described in (1.33). ♣

Essentially, the Dirac structure captures the natural power-conserving intercon-
nection structure of a system since 〈〈f, e〉〉F = 0 for all (f, e) ∈ D.

The definition of a port-Hamiltonian system is based on the definition of two
objects: the interconnection structure given by a Dirac structure and the Hamil-
tonian function representing the total energy of the system.

Definition 1.13. Let B = F×E be defined as above and consider the Dirac struc-
ture D and the Hamiltonian function H(x) : X → R, where x contains the energy
variables. Define the time variation of the energy variables as the flow variables,
f ∈ F , and the variational derivative, see (1.29), of H as the effort variables,
e ∈ E . Then the system

(f, e) =

(
dx

dt
,
δH
δx

(x)

)
∈ D, (1.35)

is a port-Hamiltonian system (PHS) with total energy H. ♣
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1. Introduction

The vibrating string described in Examples 1.1 and 1.6 is a PHS when mod-
eled by equation (1.15), with x = (p, q) being the energy variables, H is given
by (1.14), f = ∂x

∂t and e = Lx with respect to a Dirac structure induced by a
(skew-symmetric) differential operator defined by J . In fact, later we show how
any skew-symmetric differential operator defines a Dirac structure, and how this
Dirac structure is related to the graph of such operators. Furthermore, in the
next chapters we show that the class of systems described in Section 1.4 are port-
Hamiltonian systems.

Note, from Definition 1.13, that the key points in the definition of port-Hamilto-
nian systems are the Dirac structure and the Hamiltonian. A fundamental prop-
erty in the port-Hamiltonian approach is that any power-conserving intercon-
nection of port-Hamiltonian systems is a port-Hamiltonian system itself. In this
case the interconnection of the several Dirac structures is again a Dirac structure
and the total Hamiltonian is the sum of all Hamiltonians. Thus, when dealing
with the interconnection of systems, we need to look for the total Dirac struc-
ture, and this together with the total Hamiltonian gives the model of the inter-
connected system. However, in order to interconnect a system we need to define
the variables which can be used for the interconnection. These are called port-
variables. They are again conjugate variables, i.e., variables whose product gives
power. For instance, in electrical networks the port-variables are currents and
voltages, and in mechanical systems we have generalized forces and velocities.
In the case of the vibrating string, see Example 1.6, when modeled as a port-
Hamiltonian system, see (1.15), the (boundary) port-variables are the velocity 1

ρp

and the force Tq at z = a and z = b. Under the boundary conditions (1.27),
this system can be seen as the interconnection of a vibrating string and a damper
acting at z = b.

Another important property in the port-Hamiltonian approach is that it allows
to incorporate nonlinearities that the system may have. These nonlinearities are
usually included in the Hamiltonian while keeping the Dirac structure linear.
This facilitate the analysis of some nonlinear systems, since some properties of
the system can be checked by using the linearity of the Dirac structure. In the
next two examples we show how these ideas can be applied to some nonlinear
systems. Note, however, that these examples are included in order to show that
the port-Hamiltonian formulation can also be used to deal with some nonlinear
systems. We stress that in this book we only deal with linear systems.

Example 1.14 (p-system) This example is taken from [vdS05], see also [Eva98].
The p-system is a classical example of an infinite-dimensional port-Hamiltonian
system. It corresponds to the case of two physical domains in interaction and
consists of a system of two conservation laws. This system is a model for a 1-
dimensional isentropic gas dynamics in Lagrangian coordinates. It is defined
with the following variables: the specific volume v(z, t) ∈ R+, the velocity u(z, t)
and the pressure functional p(v) (which is for instance in the case of a polytropic
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1.7. Dirac structures and port-Hamiltonian systems (PHS)

isentropic ideal gas given by p(v) = Av−γ where γ ≥ 1). The p-system is then
defined by the following system of partial differential equations

∂v

∂t
− ∂u

∂z
= 0 z ∈ (a, b)

∂u

∂t
+
∂p(v)

∂z
= 0

representing the conservation of mass and of momentum. By defining the state

vector as x(z, t) = [ x1
x2

] = [ v
u ] and the vector valued flux β(z, t) =

[
β1

β2

]
=
[

−u
p(v)

]

the p-system is rewritten as the system of conservation laws

∂x

∂t
+
∂β

∂z
= 0. (1.36)

According to the framework of Irreversible Thermodynamics, the flux variables
may be written as functions of the variational derivatives of some generating

functionals. Consider the functional H(x) =
∫ b

a
H(v, u) dz whereH(v, u) denotes

the energy density, which is given as the sum of the internal energy and the
kinetic energy densities

H(v, u) = U(v) +
1

2
u2,

where −U(v) is a primitive function of the pressure. Note that the expression of
the kinetic energy does not depend on the mass density which is assumed to be
constant and for simplicity is set equal to 1. Hence no difference is made between
the velocity and the momentum. The vector of fluxes β may now be expressed
in term of the generating forces as follows

β =

[
− δH

δu

− δH
δv

]
=

[
0 −1
−1 0

] [ δH
δv
δH
δu

]
,

where δ
δw represents the variational derivative with respect to the variable w,

see equation (1.29). The anti-diagonal matrix represents the canonical coupling
between two physical domains: the kinetic and the potential (internal) domain.
The variational derivative of the total energy with respect to the state variable
of one domain generates the flux variable for the other domain. Combining the
equation above together with (1.36), the p-system may thus be written as the
following Hamiltonian system:

∂x

∂t
=

[
0 − ∂

∂z

− ∂
∂z 0

]

︸ ︷︷ ︸
J

[
δH
δx1

δH
δx2

]
. (1.37)

Note that the skew-symmetric operator J describing the Dirac structure is linear,
and the nonlinearity is incorporated in the terms corresponding to the efforts, i.e.,
δH
δx . ∗
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1. Introduction

Example 1.15 (Nonlinear vibrating string) It is easy to see from the previous ex-
ample that the nonlinear wave equation

∂2g

∂t2
=

∂

∂z

(
σ

(
∂g

∂z

))
z ∈ (a, b)

may be expressed as a p-system by selecting the state variables (recall that the

mass density is assumed to be 1) u = ∂g
∂t , v = ∂g

∂z , and p(v) = −σ(v). That is,
(compare with (1.15))

∂

∂t

[
v
u

]
=

[
0 − ∂

∂z

− ∂
∂z 0

]

︸ ︷︷ ︸
J

[
σ(v)
u

]
. (1.38)

This system describes the one-dimensional motion of an elastic material sub-

jected at the stress σ, v = ∂g
∂z represents the displacement gradient or the strain

and u = ∂g
∂t represents the velocity of the material. The stress-strain relation is

defined by σ(v). Hence we see that the port-Hamiltonian approach can also in-
corporate nonlinearities as mentioned above. In this case, the Dirac structure is
linear since it is induced by the linear operator J . The nonlinearity comes from
the Hamiltonian. ∗

1.8. Dissipative systems

In this section we present a short description of dissipative systems, which is
mainly based on [vdS00] and [Wil72]. For further details we refer to these two
references and [Sta02].

Many important physical systems have input-output properties related to the
conservation, dissipation and transport of energy. The theory surrounding such
“dissipative properties” may be used as a framework for the design and anal-
ysis of control systems. The consideration of dissipativity is useful for control
applications like robotics, active vibration damping and circuit theory.

In this section we consider state systems of the form

Σ :
ẋ = f(x, u), u ∈ U
y = h(x, u), y ∈ Y

(1.39)

where x ∈ X is the state variable, X the state space, U is the input space, and Y
is the output space. On the space U × Y of external variables there is defined a
function

s := U × Y → R, (1.40)

called the supply rate and it expresses how the system interacts with the environ-
ment with respect to the inputs and outputs.
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1.8. Dissipative systems

Definition 1.16. A state space system Σ is said to be dissipative with respect to the
supply rate s if there exists a function S : X → R+, called the storage function,
such that for all x0 ∈ X , all t1 ≥ t0, and all input functions u

S(x(t1)) − S(x(t0)) ≤
∫ t1

t0

s(u(t), y(t)) dt (1.41)

where x(t0) = x0, and x(t1) is the state of Σ at time t1 resulting from initial
condition x0 and input function u(·). If (1.41) holds with equality for all x0,
t1 ≥ t0, and all u(·), then Σ is lossless with respect to s. ♣

Typically, the storage function is given by the energy of the system, and in that
case, we say that the system is energy preserving

Equation (1.41) is know as the dissipation inequality. It expresses the relation be-
tween the change of energy in the system, i.e., S(x(t1)) − S(x(t0)) and the ex-

ternally supplied energy, i.e.,
∫ t1

t0
s(u(t), y(t)) dt; and it means that the rate of

increase of the storage cannot be larger than the supply. In other words, there
cannot be internal creation of energy, only internal dissipation of energy is pos-
sible.

One important choice of supply rate is

s(u, y) = 〈u, y〉
R

= uT y, u ∈ U, y ∈ Y = U∗. (1.42)

Definition 1.17. A state space system Σ withU = Y = R
n is passive (or impedance

passive if it is dissipative with respect to the supply rate s(u, y) = uT y. Σ is
strictly input passive if there is a δ > 0 such that Σ is dissipative with respect to

s(u, y) = uT y − δ ‖u‖2
R

. Σ is strictly output passive if there exists ε > 0 such that

Σ is dissipative with respect to s(u, y) = uT y − ε ‖y‖2
R

. Finally, Σ is impedance
energy preserving if it is lossless with respect to s(u, y) = uT y. ♣

Here ‖·‖
R

, ‖·‖U , and ‖·‖Y are the norms, respectively, on R
n, U , and Y . Another

second important choice of supply rate is

s(u, y) =
1

2
γ2 ‖u‖2

U − ‖y‖2
Y , u ∈ U, y ∈ Y. (1.43)

Definition 1.18. A state space system Σ is scattering passive if it is dissipative

with respect to the supply rate s(u, y) = 1
2γ

2 ‖u‖2
U − ‖y‖2

Y . Σ is scattering energy

preserving if it is lossless with respect to s(u, y) = 1
2γ

2 ‖u‖2
U − ‖y‖2

Y . ♣
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1. Introduction

Following these definitions one important question arises, and that is how we
may check that Σ is dissipative with respect to a given supply rate. In these
book we will focus to answer this question for the class of systems introduced in
Section 1.4. In the following chapters we will see how to choose the supply rate
and how to obtain dissipative systems.

1.9. Main ideas and aims of this thesis

This book aims to provide a mathematical framework for the modeling and anal-
ysis of open2 distributed parameter systems. In doing so, we follow the port-
Hamiltonian approach. That is, the framework uses the port-Hamiltonian sys-
tem description to express the dynamics of physical systems and their interaction
with the environment. The structure of the resulting models forms the basis for
the development of general analysis (and control) techniques.

From a mathematical point of view, this framework merges the approach based
on Hamiltonian modeling of open distributed parameter systems, employing the
notion of port-Hamiltonian systems, with the semigroup approach of infinite-
dimensional systems theory.

The proposed framework can be seen as a another tool in the analysis of dis-
tributed parameter systems. The key point of the approach is the structure of the
resulting model, which allows, in some cases, to provide and simplify results for
classes of systems which share a similar structure of the model.

The specific aims of the book are as follows.

• To describe how a linear distributed parameter system can be represented
as an infinite-dimensional port-Hamiltonian system, delineating in the pro-
cess the underlying structure of the model.

• To exploit this structure in the model to study the properties of the system,
e.g. well-posedness, stability, controllability, in such a way that one can
analyze the essential features that are necessary to provide a starting point
for a practical theory for control design in the port-Hamiltonian approach
to distributed parameter systems.

1.10. Outline of the thesis

This book is divided into nine chapters. The content of the remaining chapters is
briefly summarized as follows.

2By open system we mean a system that can interact with the environment and/or with other
systems.
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1.10. Outline of the thesis

Chapter 2. This chapter is the starting point for the discussion in the subsequent
chapters. It mainly deals with a class of boundary control systems (BCS)
in one-dimensional spatial domain where the dissipation phenomena has
been neglected. That is, we deal with the class of systems introduced in
Section 1.3. In this chapter we answer points 1, 2, and 3 on page 5. We pa-
rameterize this class of BCS such that the resulting system is passive. This
parameterization is based on the selection of two matrices that determine
the input and outputs of the system. We also describe the relation of this
class of BCS with the system node.

Chapter 3. In this chapter we focus on three subclasses of boundary control sys-
tems (BCS), namely, impedance energy preserving systems, scattering en-
ergy preserving systems, and output energy preserving systems. We de-
scribe the properties of their corresponding system nodes, and show that
these systems are also conservative. This helps us to give some relations
between observability, controllability, and stability for these subclasses of
BCS.

Chapter 4. This chapter studies the Riesz basis property of a class of BCS de-
scribed by first order differential operators. We show that under some
common assumptions, the system has the Riesz basis property. The va-
lidity of this property results not only in the fact that the stability of the
system is determined by the spectrum of the semigroup generator, but also
is important since the dynamic behavior of the system can be described in
the form of eigenfunction expansions of nonharmonic Fourier series.

Chapter 5. This chapter deals with stability and stabilization of the class of BCS
studied in Chapters 2 and 3. We provide some results that facilitate to
prove asymptotic and exponential stability of some BCS. We show that in
some cases, it is possible to verify the stability property of a BCS by check-
ing a condition on a matrix.

Chapter 6. In this chapter we extend the results presented in Chapter 2 to a
larger class of system. This allows us to deal with system where the dissi-
pation phenomena (e.g. heat transfer, damping) is present. We also study,
briefly, stability properties of these class of systems.

Chapter 7. This chapter is concerned with the interconnection of systems stud-
ied in Chapters 2 and 6. It also describes how the results presented in
Chapter 2 and 6 could be extended to other systems by seeing these other
systems as the interconnection of systems studied in previous chapters.

Chapter 8. In this chapter we give some ideas on how the results presented in
Chapter 2 could be extended to systems with d-dimensional spatial do-
main. We present what could be the basic calculus where the extension
could be based on.
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1. Introduction

Chapter 9. This chapter contains conclusions that can be drawn from the discus-
sion so far and highlights the contributions made in this thesis. At the end
of the chapter we also present a few recommendations on possible future
research directions.

Finally, we include an Appendix which briefly describes Holmgren’s theorem
and how we use it in this thesis. Also, the bibliography as well as an index is
included.
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Chapter 2

Distributed Parameter Systems
Related to Skew-symmetric

Operators: 1D Case

In this chapter we deal with systems where the dissipation phenomena is ne-
glected in the model. The results presented in the first part of this chapter are
based on [LZM05]. In particular, we study systems of the form (1.23) with S = 0,
that is

∂x

∂t
(t, z) = JLx(t, z), x(0, z) = x0(z), (2.1a)

u(t) = Bx(t, z), z ∈ (a, b), t ≥ 0 (2.1b)

y(t) = Cx(t, z), (2.1c)

where B and C are boundary operators, L is a bounded coercive operator on
X = L2(a, b; R

n), the differential operator J is given by

J e =

N∑

i=0

Pi
∂ie

∂zi
, (2.2)

with Pi, i = {1, 2, . . . , N}, constant real matrices of size n × n, e ∈ HN (a, b; Rn).
Usually, in applications, L is a multiplication operator and thus it can be seen as
a matrix whose elements depend on z. Here HN (a, b; Rn) is the Sobolev space
of order N , cf. [RR04]. For simplicity sometimes we will denote it by HN (a, b)n.
Clearly, the operator J is a differential operator of order N acting on the state
space X = L2(a, b; R

n). The formal adjoint of J is given by (see [RR04, §5.5])

J ∗e =

N∑

i=0

(−1)iPT
i

∂ie

∂zi
, z ∈ [a, b].
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2. Distributed Parameter Systems Related to Skew-symmetric Operators

Assuming that J is formally skew-symmetric, i.e., J ∗ = −J , it follows from the
above expression and (2.2) that

Pi = (−1)i+1PT
i , i = 0, 1, . . . , N. (2.3)

Recall from Example 1.6, that the skew-symmetry of the operator J is related
to conservation of energy. In fact, often this operator expresses the canonical
interdomain coupling between different physical domains (e.g., elastic energy
domain, kinetic energy domain) and this corresponds to a change of energy from
one domain to another while keeping the total energy constant. That is why
the class of systems described by (2.1) consists of systems where the dissipation
phenomena has been neglected. For instance, this class of systems contains some
beam equations and the well-known wave equation. This includes, in general,
models which describe vibrations of flexible structures and traveling waves in
acoustics.

In this chapter we explain how to select the boundary operators B and C such
that the system (2.1) is a boundary control system in the sense of Section 1.5.
Furthermore, by this selection of B and C the system will be dissipative (in par-
ticular, energy preserving) as explained in Section 1.8. We also see that the se-
lection of these boundary operators is be based on the choice of a matrix, which
in turn simplifies the analysis and design of this class of boundary control sys-
tems. Also, the relation with Port-Hamiltonian systems (PHS) is studied, as well
as the respective Dirac structure. We start by describing the properties related
to the skew-symmetric operator J . These properties correspond to attributes
coming from the internal interconnection of the elements that comprise the sys-
tem. We introduce the port-variables, which are the variables that the system
uses to interact with the environment. In particular, we define the boundary
port-variables.

2.1. Stokes theorem and port-variables

Recall from Section 1.7 that in order to define a Dirac structure we need to intro-
duce a symmetric pairing or a bilinear form on the so called bond space. From
the same section we can see that it is not clear how to incorporate boundary
variables in the definition of this bilinear form. In this section we show how to
define such a symmetric form. We will also see throughout this chapter that the
specification of this bilinear form is fundamental to obtain the results presented
here.

We start by presenting an extension of Stokes’ theorem which applies to skew-
symmetric differential operators. This theorem gives rise to a Green’s type iden-
tity, which in turn serves as the desired bilinear form. Thus the bilinear form
arises naturally from this Stokes’ theorem.
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2.1. Stokes theorem and port-variables

Theorem 2.1: Let J be a formally skew-symmetric operator described by (2.2).
Then for any two functions e1, e2 ∈ HN (a, b)n we have

∫ b

a

(J e1)T (z) e2(z) dz+

∫ b

a

eT
1 (z)(J e2)(z) dz

=



[
eT
1 (z), . . . ,

dN−1eT
1

dzN−1 (z)

]
Q




e2(z)
...

dN−1e2

dzN−1 (z)







b

a

(2.4)

where

Q =




P1 P2 P3 · · · PN−1 PN

−P2 −P3 −P4 · · · −PN 0

P3 P4
. . .

. . . 0 0
...

. . .
. . .

. . .
...

(−1)N−1PN 0 · · · · · · 0



. (2.5)

Furthermore, Q is a symmetric matrix.

PROOF: The proof is based on a iterative application of the well-know integra-
tion by parts. For the proof we refer the reader to [LZM04].

Observe that the theorem above relates the integral over an interval to the bound-
ary values. Thus we can see it as a generalization of Stokes’ Theorem to skew-
symmetric differential operators. Equation (2.4) can be seen as a Green identity,
see [Joh78]. The above theorem also shows that any skew-symmetric differential
operator gives rise to a symmetric bilinear form on the space of boundary vari-
ables, where the coefficients of the operator are captured in the matrixQ. Ideally,
the bilinear form (1.32), with f i = (J ei), should not depend on the coefficients of
the operator J . In order to avoid this we introduce the boundary port-variables
and a bond space in such a way that the Stokes’ theorem above applied to the
differential operator J may be expressed using the canonical symmetric pairing
defined in equation (1.32). With this in mind, we first focus on some properties of
the matrix Q and, based on this, we introduce some new matrices, which finally
will lead us to the definition of boundary-port variables.

ASSUMPTION 2.2: Note that Q in (2.5) is nonsingular if and only if the matrix
PN is nonsingular. Thus, we assume for the rest of this chapter that Q is nonsin-
gular. ♥

The evaluation on a and b on the right hand side of (2.4) gives rise to the follow-
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2. Distributed Parameter Systems Related to Skew-symmetric Operators

ing definition.

Definition 2.3. The matrix Qext ∈ R
2nN×2nN associated with the differential op-

erator J is defined by

Qext =

[
Q 0
0 −Q

]
, (2.6)

where Q is the symmetric matrix given in (2.5). ♣

Next we factorizeQext in such a way that it allows us to define the port-variables
and at the same time the bilinear form becomes independent of the coefficients
of the operator J .

Lemma 2.4: The matrix Rext ∈ R
2nN×2nN defined as

Rext =
1√
2

[
Q −Q
I I

]
, (2.7)

is nonsingular and satisfies
[
Q 0
0 −Q

]
= RT

ext ΣRext, (2.8)

where

Σ =

[
0 I
I 0

]
. (2.9)

Furthermore, all possible matrices R which satisfy (2.8) are given by the formula

R = U Rext,

with U satisfying UT ΣU = Σ. ♥
PROOF: The proof follows easily by putting (2.7) into (2.8). See the proof of
Lemma 3.4 of [LZM05] for details.

Now we are in a position where we can define a proper bilinear form, which
allows us to define Dirac structures and systems with certain structure. But first,
based on the previous lemma, we introduce the boundary port-variables as the
following linear combination of the boundary variables.

Definition 2.5. Define the boundary trace operator τ : HN (a, b; Rn) → R
2nN by

τ(e) =




e(b)
...

dN−1e
dzN−1 (b)
e(a)

...
dN−1e
dzN−1 (a)




. (2.10)
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2.2. Dirac structure and port-Hamiltonian systems

Then, the boundary port-variables associated with the differential operator J are
the vectors e∂ , f∂ ∈ R

nN , defined by

[
f∂,e

e∂,e

]
= Rext τ(e), (2.11)

where Rext is defined by (2.7). ♣

We write
[

f∂
e∂

]
instead of

[
f∂,u
e∂,u

]
when the dependance on the variable u is obvi-

ous in the context. The following lemma gives more details on the trace operator.

Theorem 2.6: Consider the boundary trace operator τ : HN (a, b; Rn) → R
2nN

introduced in Definition 2.5. This operator is linear, bounded and surjective
from HN (a, b; Rn) onto R

2nN , i.e.,

ran τ = R
2nN .

PROOF: For the proof we refer to Section 7.8 of [Aub00] or to the proof of Theo-
rem 4.5 of [LZM04].

Let us stress that the definition of the boundary port-variables depends entirely
on the coefficients of the operator J , i.e., Pi. Observe that these port-variables
can also be seen as an operator acting on the boundary of the spatial domain. Af-
ter using the definition above and Lemma 2.4 it is easy to see that equation (2.4)
becomes

∫ b

a

(J e1)T (z) e2(z) dz +

∫ b

a

eT
1 (z)(J e2)(z) dz =

[
f∂,e1

e∂,e1

]T

Σ

[
f∂,e2

e∂,e2

]
(2.12)

= fT
∂,e1

e∂,e2
+ eT

∂,e1
f∂,e2

,

for e1, e2 ∈ HN (a, b)n. Now we can proceed to define the Dirac structure.

2.2. Dirac structure and port-Hamiltonian systems

In the previous section we showed the basic steps to choose the bilinear form
needed to define the Dirac structure. Next, we need to select the flow and ef-
fort space. As mentioned earlier, the bilinear form contains elements from the
boundary and elements of the state space. That is why we choose the flow and
effort space as

F = E = L2(a, b; R
n) × R

nN , (2.13)

27



2. Distributed Parameter Systems Related to Skew-symmetric Operators

with their natural inner product. It is easy to see that E is the dual of F . Follow-
ing Section 1.7 we define the bond space B as F×E and, based on equation (2.12),
we endow B with the canonical symmetric pairing

〈
(f1, f1

∂ , e
1, e1∂), (f2, f2

∂ , e
2, e2∂)

〉
+

=
〈
f1, e2

〉
L2

+
〈
e1, f2

〉
L2

−
〈
f1

∂ , e
2
∂,

〉
R
−
〈
e1∂,, f

2
∂

〉
R
, (2.14)

where

(f i, f i
∂ , e

i, ei
∂) ∈ B i ∈ {1, 2}.

Let us mention again that this pairing on the bond space corresponds to the
general definition given in equation (1.32). Note also that the bilinear form (2.14)
is the same as equation (2.12) when we let f = J e. Following the definition of
the flow and effort space, i.e. (2.13), one immediately sees that every element of
these spaces is a vector, with the top part being a function (which lies in the state
space X = L2(a, b; R

n)), and the bottom element being part of the (boundary)
port-variable.

Now we have all necessary ingredients to define the Dirac structure associated
with the skew-symmetric operator J given by (2.2)–(2.3).

Theorem 2.7: Consider the skew-symmetric operator J given by (2.2)–(2.3)
together with the boundary port-variables as described in Definition 2.5. Then,
the subspace DJ of B defined by

DJ =








f
f∂

e
e∂


 ∈ B

∣∣∣∣ e ∈ HN (a, b; Rn), J e = f,

[
f∂,e

e∂,e

]
= Rext τ(e)




(2.15)

is a Dirac structure with respect to the bilinear form (2.14).

PROOF: The proof is based on Definition 1.12. First one proves that for any two
elements lying in the subspace DJ , say b1, b2, there holds 〈b1, b2〉+ = 0, which

follows immediately from (2.12). This gives DJ ⊂ D⊥
J . Obviously the other part

is to prove the other inclusion. For the proof see [LZM04, §3].

It is worth mentioning that the Dirac structure as a subspace of the bond space B
is closed. In fact, it can be seen as the graph of a skew-adjoint operator, which is
related to J , see Theorem 3.12.

Observe that we have not defined dynamics, we have just defined the geomet-
ric structure of the system (2.1). The dynamics are defined when we define the
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2.2. Dirac structure and port-Hamiltonian systems

corresponding port-Hamiltonian system. To do so, we need the energy function.
Assume that the Hamiltonian can be expressed as

H(x) =
1

2

∫ b

a

xT (z) (Lx)(z) dz, (2.16)

where x is the energy variable and L is the coercive operator described at the
beginning of this chapter. Then we can adapt the definition of port-Hamiltonian
systems (PHS), see Definition 1.13, to include boundary port-variables as fol-
lows

• define the time variation of the energy variables as the flow variables, i.e.,
f = ∂x

∂t ,

• define the variational derivative of H as the effort variables, e = δH
δx = Lx,

and

• include the two external boundary port-variables f∂ , e∂ .

Then the system




f
f∂

e
e∂


 =




∂x
∂t
f∂

Lx
e∂


 ∈ DJ (2.17)

is a port-Hamiltonian system with total energy H . It is easy to see from Theo-
rem 2.7 that the condition above implies that

f = J e and thus
∂x

∂t
= JLx,

which is the same equation that defines our class of systems, see (2.1a). Fur-
thermore, since (f, f∂ , e, e∂) lies in the Dirac structure DJ , we must have
from Definition 1.12 that any two trajectories lying in the Dirac structure, say
(f i, f i

∂ , e
i, ei

∂) for i = {1, 2}, satisfy for each time instant t

0 =
〈
(f1, f1

∂ , e
1, e1∂), (f2, f2

∂ , e
2, e2∂)

〉
+

=
〈
(J e1, f1

∂ , e
1, e1∂), (J e2, f2

∂ , e
2, e2∂)

〉
+

=
〈
J e1, e2

〉
L2

+
〈
e1,J e2

〉
L2

−
〈
f1

∂ , e
2
∂,

〉
R
−
〈
e1∂,, f

2
∂

〉
R

=
〈
J e1, e2

〉
L2

+
〈
e1,J e2

〉
L2

−
〈[

f1
∂

e1∂

]
,Σ

[
f2

∂

e2∂

]〉

R

. (2.18)

Hence, any two trajectories lying on the Dirac structure satisfy equation (2.12)
pointwise in time and, therefore, they also satisfy Theorem 2.1. This property
is used very often since it is important when defining and studying properties
of the class of boundary control systems (2.1). At this stage it is significant to
mention two points.
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2. Distributed Parameter Systems Related to Skew-symmetric Operators

• The input and output variables, i.e., u and y, as appear in (2.1) are selected
as a linear combination of the port-variables. Note that e = Lx and thus we
infer from (2.1) that the boundary operator B will contain an operator (to be
selected) times Rext τ(·). Hence, in equation (2.12) the term corresponding
to the port-variables can be replaced by a term depending only on the input
u and output y.

• Observe that the time variation of the energy H in (2.16) is (assuming dif-
ferentiability)

dH

dt
=

∫ b

a

(
∂x

∂t
(z)

)T

(Lx)(z) dz =

∫ b

a

fT e dz =

∫ b

a

(J e)T
e dz,

which can be written in terms of the port-variables by (2.12). This in turn,
implies by the preceding item that dH

dt can be written in terms of the inputs
and outputs. Hence, obtaining dissipative (in this case lossless) systems in
the sense of Section 1.8 with the storage function H .

In the next section we show how to select input and outputs, such that the system
is a boundary control system in the sense of Section 1.5 and dissipative in the
sense of Section 1.8.

2.3. Parametrization of boundary control systems

In the previous section we have associated to the skew-symmetric operator J
a Dirac structure DJ . In this section we define dynamic systems with inputs,
states, and outputs with respect to this Dirac structure. These systems are bound-
ary control systems in the sense of Section 1.5, which implies that the controls
and observations act on the boundary of the spatial domain. With respect to
the Dirac structure DJ it is possible to define many systems. However, we only
consider those systems for which the energy does not grow when the input is
zero, i.e., dissipative systems. This implies that the associated semigroup is a
contraction. Again, the results presented in this section are based on [LZM05]
and [LZM04].

We begin by showing that J is the infinitesimal generator of a contraction semi-
group for appropriate choices of the boundary conditions (inputs).

2.3.1. Contraction semigroups associated with J

We begin by studying the differential operator J for different boundary condi-
tions (inputs). As stated above we want to characterize those boundary condi-
tions for which the associated differential operator is the infinitesimal generator
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2.3. Parametrization of boundary control systems

of a strongly continuous semigroup. In [LZM05] and [LZM04] the authors based
this parametrization on the selection of a full rank matrix W of size nN × 2nN
satisfying

W ΣWT ≥ 0, (2.19)

where Σ = [ 0 I
I 0 ] was defined in Lemma 2.4. In those papers it is also shown that

the condition above holds if and only if W can be parameterized as

W = S
[
I + V, I − V

]
, V V T ≤ I, (2.20)

where S ∈ R
nN×nN is a nonsingular matrix and V ∈ R

nN×nN is clearly a con-
traction matrix, see [LZM05, Lemma A.1]. It is worth mentioning that, under
these conditions, the kernel of W satisfies

kerW = ran

[
I − V

−(I + V )

]
. (2.21)

In the following theorem it is shown that if the port-variables are restricted to the
kernel of W , then this defines the domain of a contraction semigroup associated
with the operator J .

Theorem 2.8: Let W be a full rank real matrix of size nN × 2nN and con-
sider the skew-symmetric operator J described by (2.2)–(2.3) together with
the boundary port-variables as described in Definition 2.5. Define the operator
A and its domain, D(A), as

A e = J e (2.22)

and

D(A) =

{
e ∈ HN (a, b; Rn) |

[
f∂,e

e∂,e

]
∈ kerW

}
. (2.23)

Then A generates a contraction semigroup T (t), t ≥ 0, on L2(a, b; R
n) if and

only if W satisfies W ΣWT ≥ 0.

Furthermore, A is the infinitesimal generator of a unitary semigroup on
L2(a, b; R

n) if and only if W satisfies W ΣWT = 0.

PROOF: The proof is based on [GG91, Theorem 3.1.6], which in turn depends on
proving the validity of an equality of the type (2.18). For details see [LZM05,
§4.1].

Remark 2.9. The operator A can also be written in terms of the Dirac structure
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2. Distributed Parameter Systems Related to Skew-symmetric Operators

DJ as A e = J e with domain

D(A) =
{
e ∈ L2(a, b; R

n) | the boundary port-variable associated to e, i.e.
[
f∂,e

e∂,e

]
, is in kerW and there exists

an f ∈ L2(a, b; R
n) such that (f, f∂,e, e, e∂,e) ∈ DJ

}
,

where DJ is described in Theorem 2.7. ♣

In the previous section it was mentioned that the boundary operator B appearing
in (2.1b) could be chosen as an operator times Rext τ(·). Following the theorem
above, we can deduce that it can be selected as B(·) = W Rextτ(·), where τ(·)
is the boundary evaluation as given in Definition 2.5. Hence, we have param-
eterized the set of boundary conditions for which the partial differential equa-
tion (2.1) with input u = 0 has a unique (strong or weak) solution, see [CZ95b].
Moreover, it is a boundary control system in the sense of Section 1.5 provided
that B is surjective. Note, in this case, that the point (a) in Definition 1.10 is true
if the conditions in Theorem 2.8 are satisfied. Thus we only need to prove point
(b) in that definition, that is, to prove that the operator B(·) = W Rextτ(·) is sur-
jective. But this follows easily from Theorem 2.6. In the next section we will
give more details on this as well as how to select the output so that the system is
dissipative.

2.3.2. Boundary control systems associated with J

In the previous subsection we have derived the family of contraction semigroups
associated with a skew-symmetric differential operator J . We showed that this
family originate from the Dirac structure DJ associated with J . More precisely,
we have parameterized these semigroups by a family of subspaces of the bound-
ary port-variables, defined as the kernel of a class of matricesW . In the following
theorem, which is taken from [LZM05], the authors use this W to define bound-
ary inputs/controls. Since the rank ofW is nN and since we have 2nN boundary
variables, it is clear that we use half of the set of boundary variables to define in-
puts. We show that the other half may be regarded as outputs.

Theorem 2.10: Let W be a full rank real matrix of size nN × 2nN and consider
the skew-symmetric operator J described in Theorem 2.7. If W has full rank
and satisfiesWΣWT ≥ 0, where Σ is defined in (2.9), then the following system

∂x

∂t
(t) = J x(t), or equivalently (see (2.17))

(
ẋ(t), f∂(t), x(t), e∂(t)

)
∈ DJ

(2.24)
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2.3. Parametrization of boundary control systems

defined on the state space L2(a, b; R
n) with input

u(t) = B x(t) = W

[
f∂,x(t)
e∂,x(t)

]
(2.25)

is a boundary control system on L2(a, b; R
n). Furthermore, the operator A = J

with domain

D(A) =

{
x ∈ HN (a, b; Rn) |

[
f∂,x

e∂,x

]
∈ kerW

}
, (2.26)

generates a contraction semigroup on L2(a, b; R
n).

Let W̃ be a full rank matrix of size nN × 2nN such that
[

WfW ] is invertible. If we

define the linear mapping C : HN (a, b; Rn) → R
nN as,

Cx(t) := W̃

[
f∂,x(t)
e∂,x(t)

]
(2.27)

and the output as
y(t) = Cx(t), (2.28)

then for u ∈ C2(0,∞; RnN ), x(0) ∈ HN (a, b; Rn), and Bx(0) = u(0) the follow-
ing balance equation is satisfied:

1

2

d

dt
‖x(t)‖2

L2
=

1

2

(
uT (t) yT (t)

)
PW,W̃

(
u(t)
y(t)

)
, (2.29)

where

P−1

W,W̃
=

[
W

W̃

]
Σ

[
W

W̃

]T

=

[
WΣWT WΣW̃T

W̃ΣWT W̃ΣW̃T

]
. (2.30)

Furthermore, the invertibility of the matrix
(

WΣW T WΣfW TfWΣW T fWΣfW T

)
is equivalent to

the invertibility of
[

WfW ].
PROOF: We give a sketch of the proof, for details see [LZM05, §4]. That we have
a boundary control system in the sense of Definition 1.10 follows from Theo-
rem 2.8 (where the semigroup generator property is proven) and Theorem 2.6
(from which the existence of the operator R follows easily, since W has full row-
rank). By the definition of R and D(A), we see that the conditions stated in
the theorem are the same as x(0) − Ru(0) ∈ D(A). Hence by Theorem 3.3.3 of
[CZ95b] we have that there exists a classical solution of (2.24)–(2.25). Hence, in
particular, x(t) ∈ HN (a, b; Rn) holds pointwise in t, x(t) is differentiable as a
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2. Distributed Parameter Systems Related to Skew-symmetric Operators

function of t, and ẋ(t) = J x(t). Using this, we obtain

d

dt
‖x(t)‖2

L2
=

d

dt
〈x(t), x(t)〉L2

= 〈ẋ(t), x(t)〉L2
+ 〈x(t), ẋ(t)〉L2

= 〈J x(t), x(t)〉L2
+ 〈x(t),J x(t)〉L2

=

[
f∂,x(t)
e∂,x(t)

]T

Σ

[
f∂,x(t)
e∂,x(t)

]
, (2.31)

and that the relation between the port-variables and the input-output is given by
[
u
y

]
=

[
W

W̃

] [
f∂,x

e∂,x

]
,

where
[

WfW ] is nonsingular. See [LZM05, §4] or [LZM04] for more details.

Remark 2.11. Note that for the same Dirac structure the properties of the PDE
obtained by a choice of inputs and outputs can be completely different. Hence for
the same underlying Dirac structure, many different systems theoretic properties
are possible. ♣

Typically, for linear boundary control systems, the norm of the state space is se-
lected to match the energy of the system. In that case, equation (2.29) represents
an energy balance equation. This in turn, implies that the system is lossless or
energy preserving, see Section 1.8. Also, note that the matrix PW,W̃ appearing in

equation (2.29) depends entirely on the matrices W and W̃ and it determines the
supply rate of the obtained passive system. Thus, we could, for instance, select
those matrices so that the resulting system is either impedance energy preserving
or scattering energy preserving. Later we shall give more details on this.

Comparing the system described in Theorem 2.10 with the system appearing
in (2.1) we immediately see that we have not included the operator L. In the next
section we show that once we have proved existence of solutions for systems
associated to the skew-symmetric operator J (with L = I), i.e., Theorem 2.8, the
same result is easily extended to systems which include the operator L, i.e. (2.1).
This shows one of the advantages of using the port-Hamiltonian approach, since
we can study some properties of the system associated with J and from there
conclude the same results for the whole system. In other words, we have split the
model of the system into two parts: The part related to J , which expresses the
geometric interconnection structure, and the part related to L, which represents
intrinsic properties of the system (like variable or constant parameters).

Example 2.12 Consider the vibrating string of Example 1.1 described by (1.15)
with ρ = T = 1, i.e.,

∂

∂t

[
p
q

]

︸ ︷︷ ︸
x

(z, t) =

[
0 1
1 0

]

︸ ︷︷ ︸
P1

∂

∂z

[
p
q

]

︸ ︷︷ ︸
x

(z, t),
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2.3. Parametrization of boundary control systems

where x = [ p
q ] contains the energy variables. From the equation above we can

distinguish that the operator J is, in this case, described by J = P1
∂
∂z . The

assumption ρ = T = 1 implies that the momentum p and the velocity p/ρ can be
considered to be the same; similarly for the strain q and the stress Tq. In this case
we have that the boundary port-variables are, see (2.7) and Definition 2.5,

[
f∂

e∂

]
=

√
2

2

[
P1 −P1

I I

] [
x(b)
x(a)

]
=

√
2

2

[
q(b)−q(a)
p(b)−p(a)
p(b)+p(a)
q(b)+q(a)

]
=

[
f∂1

f∂2
e∂1
e∂2

]
. (2.32)

It is important to notice that

‖x‖2
=

∫ b

a

|x(z)|2 dz =

∫ b

a

∣∣∣∣
[
p(z)
q(z)

]∣∣∣∣
2

dz =

∫ b

a

|p(z)|2 + |q(z)|2 dz,

which is the same expression that define the energy of the system, see (1.14).
There are different settings to which the string can be subjected to. This corre-
sponds to different boundary conditions, for instance

p(a, t) = 0, p(b, t) = 0 string clamped at both ends (clamped-clamped)

p(a, t) = 0, q(b, t) = 0 string clamped at z = a, free at z = b (clamped-free),

are two examples of possible boundary conditions.

• (clamped-clamped) In our setting the first case can be obtained by select-
ing the matrix W

W =
1√
2

(
0 −1 1 0
0 −1 −1 0

)

and letting the input u(t) = 0, t ≥ 0. Indeed, in this case we have that

u = W

[
f∂,x

e∂,x

]
=

[
p(a)
−p(b)

]
and WΣWT = 0.

This guarantees, by Theorem 2.8, that this system has a solution. In fact,
the operator given by

Ax = P1
∂x

∂z
, D(A) =

{
x ∈ H1(a, b)2 | W

[
f∂,x

e∂,x

]
= 0

}
,

with
[

f∂
e∂

]
given in (2.32), generates a unitary semigroup. A logical selec-

tion for the output will be to observe the stress (force) at both ends, i.e.,

y =
[
−q(a)
−q(b)

]
. This corresponds to a matrix

W̃ =
1√
2

(
1 0 0 −1

−1 0 0 −1

)
.
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Then, from equation (2.30) we obtain that

P−1

W,W̃
= PW,W̃ =

[
0 I
I 0

]
,

which, in turn gives from (2.29) that

d

dt
E(t) =

1

2

d

dt
‖x(t)‖2

=
1

2

[
uT (t) yT (t)

] [ 0 I
I 0

] [
u(t)
y(t)

]

= uT (t) y(t) = 0,

since we took u(t) = 0. ∗

Observe from the previous example that when the operator L is taken into ac-
count, the norm on the state space has to be changed so that it matches the energy
of the system. This will be the main idea in the argument used in the next section.

2.3.3. Boundary control systems associated with JL

In the previous section we defined boundary control systems associated with the
skew-symmetric operator J . We showed how to parameterize the selection of
inputs and outputs in terms of matrices. However, we did not completely char-
acterize the selection of inputs and outputs for the class of systems (2.1) since we
did not include the coercive operator L. Nevertheless, at the end of Section 2.2,
we outlined how this could be done. Also, at the end of the previous section we
mentioned that this could be done by modifying the norm on the state space.

In Section 2.3.2 (when L was assumed to be the identity operator) we considered
the state space X = L2(a, b; R

n) with its natural inner product, i.e.,

〈x1, x2〉 =

∫ b

a

xT
1 (z)x2(z) dz.

In order to deal with the class of systems (2.1) when L is taken to be any bounded
coercive operator we need to redefine this state space as follows. Let the energy
state space be defined by

X = L2(a, b; R
n) with inner product 〈x1, x2〉L = 〈x1,Lx2〉

and corresponding norm ‖x1‖2
L = 〈x1, x1〉L for any x1, x2 ∈ X ,

(2.33)

where 〈·, ·〉 is the natural L2-inner product. Since L is assumed to be a bounded
coercive operator, it is easy to see that the natural norm on X and the L-norm
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2.3. Parametrization of boundary control systems

are equivalent. Also, observe that this norm corresponds to a Hamiltonian of the
form (2.16), i.e.,

H(x) =
1

2

∫ b

a

xT (z) (Lx)(z) dz =
1

2
‖x‖2

L . (2.34)

Now we can proceed to adapt the definition of port-Hamiltonian systems (PHS),
see Definition 1.13, to include boundary port-variables as follows (see the argu-
ment after equation (2.16))

• define the time variation of the energy variables as the flow variables, i.e.,
f = ∂x

∂t ,

• define the variational derivative of H as the effort variables, e = δH
δx = Lx,

• include the two external boundary port-variables f∂ , e∂ .

Then the system




f
f∂

e
e∂


 =




∂x
∂t
f∂

Lx
e∂


 ∈ DJ

is a port-Hamiltonian system with total energy H . From Theorem 2.7 it is easy
to see that the conditions above gives that

f = J e and thus
∂x

∂t
= JLx,

which is the same equation that defines our class of systems, see (2.1a). Fur-
thermore, since (f, f∂ , e, e∂) lies in the Dirac structure DJ , we must have
from Definition 1.12 that any two trajectories lying in the Dirac structure, say
(f i, f i

∂ , e
i, ei

∂) for i = {1, 2}, satisfy for each time instant t

0 =
〈
(f1, f1

∂ , e
1, e1∂), (f2, f2

∂ , e
2, e2∂)

〉
+

=
〈
(J e1, f1

∂ , e
1, e1∂), (J e2, f2

∂ , e
2, e2∂)

〉
+

=
〈
J e1, e2

〉
L2

+
〈
e1,J e2

〉
L2

−
〈
f1

∂ , e
2
∂,

〉
R
−
〈
e1∂,, f

2
∂

〉
R

= 〈J Lx1,Lx2〉L2
+ 〈Lx1,JLx2〉L2

−
〈
f1

∂ , e
2
∂,

〉
R
−
〈
e1∂,, f

2
∂

〉
R

= 〈J Lx1, x2〉L + 〈x1,JLx2〉L −
〈
f1

∂ , e
2
∂,

〉
R
−
〈
e1∂,, f

2
∂

〉
R
. (2.35)

All this, together with the expression for the Dirac structure (2.15) shows that,
in this case, the definition of PHS corresponds, in part, to the abstract system
ẋ(t) = Ax(t) where the differential operator A is defined by

A = JL,

which need not be skew-symmetric nor need have constant coefficients. Note
that so far we have defined linear port-Hamiltonian systems with boundary

37



2. Distributed Parameter Systems Related to Skew-symmetric Operators

port-variables using the definition of Dirac structure for which the port-variables
are not split into input and output variables. However, we have seen in Sec-
tion 2.3.2 that using specific subspaces of the port-variables, one may define
input and output variables as belonging to complementary subspaces of the
boundary port-variables. Moreover, by choosing appropriately these subspaces,
one may define a boundary control system with its associated semigroup being
a contraction. In the sequel we reformulate the boundary port-Hamiltonian sys-
tem as a boundary control system. We use the parametrization of the input and
output variables and the contractive semigroups associated with the Dirac struc-
ture DJ given in Section 2.3.2. The state variables have become the image of the
effort variables through the coercive operator L−1. In this case, the domain of
the differential operator JL becomes

D(JL) =
{
x ∈ X | Lx ∈ HN (a, b; Rn)

}
. (2.36)

First we prove the equivalent of Theorem 2.8 and then we formulate the bound-
ary control systems.

Theorem 2.13: Let W be a full rank real matrix of size nN × 2nN and consider
the operator JL as described above on the state spaceX given by (2.33). Define
the operator AL and its domain, D(AL), as

AL x = JLx (2.37)

and

D(AL) =

{
x ∈ X | Lx ∈ HN (a, b; Rn),

[
f∂,Lx

e∂,Lx

]
∈ kerW

}
. (2.38)

Then AL generates a contraction semigroup T (t), t ≥ 0, on X if and only if W
satisfies W ΣWT ≥ 0.

Furthermore, AL is the infinitesimal generator of a unitary semigroup on
L2(a, b; R

n) if and only if W satisfies W ΣWT = 0.

PROOF: We use the Lümer-Phillips theorem, see [Paz83]. This theorem states
that an operator, say A, on a space H generates a contraction semigroup if and
only if it satisfies 〈Ax, x〉H ≤ 0 for all x ∈ D(A) and 〈A∗y, y〉H ≤ 0 for all y ∈
D(A∗).

First notice that the domain of AL is equal to D(AL) = {x ∈ X | Lx ∈ D(A)}
where A is described in Theorem 2.8. For x ∈ D(AL) we have

〈ALx, x〉L = 〈J Lx,Lx〉 = 〈J e, e〉 ,
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2.3. Parametrization of boundary control systems

where e = Lx. Since e ∈ D(A), see (2.23), where A = J is the operator in
Theorem 2.8, we conclude that

〈ALx, x〉L = 〈Ae, e〉 ,

which is non-positive, since A generates a contraction semigroup on L2(a, b)
n,

see Theorem 2.8.

Next we show that 〈A∗
Ly, y〉L ≤ 0 on D(A∗

L). We know from (2.31) that (recall
that 〈·, ·〉L2

is a real inner product and thus 〈e1,J e2〉L2
= 〈J e2, e1〉L2

)

〈e,J e〉L2
=

1

2

[
f∂,e

e∂,e

]T

Σ

[
f∂,e

e∂,e

]
. (2.39)

Since 〈AL x, y〉L = 〈J Lx,Ly〉 for any x ∈ D(AL), it is not hard to show that
A∗

L = A∗L with D(A∗
L) = {y ∈ X | Ly ∈ D(A∗)}. Using a similar argument as

above we can find that 〈A∗y, y〉L ≤ 0 on D(A∗). This completes the proof.

Observe that once we have proved existence of solutions for the associated op-
erator J , the same results follows easily for the operator JL, as mentioned ear-
lier. However, it is worth mentioning that the semigroup generated by AL, say
TL(t), is not related to the semigroup generated by A, say T (t), e.g. a relation
like TL(t) = L−1T (t)L does not hold. In fact, as we shall see in Chapter 4, the
eigenvalues of A and AL are completely different.

Let us stress that the evaluation on the boundary used for the port-variables in
the theorems above and below is done on Lx rather than only on x, i.e., see (2.10),

[
f∂,Lx

e∂,Lx

]
= Rext τ(Lx).

Next we define boundary control systems for the class of systems (2.1).

Theorem 2.14: Let W be a full rank real matrix of size nN × 2nN and consider
the operator JL as described above. If W satisfies WΣWT ≥ 0, where Σ is
defined in (2.9), then the following system

∂x

∂t
(t) = JLx(t), or equivalently

(
ẋ(t), f∂,Lx(t), Lx(t), e∂,Lx(t)

)
∈ DJ

defined on the state space X (see (2.33)) with input

u(t) = Bx(t) = W

[
f∂,Lx(t)
e∂,Lx(t)

]
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2. Distributed Parameter Systems Related to Skew-symmetric Operators

is a boundary control system on X . Furthermore, the operator AL = JL with
domain

D(AL) =

{
x ∈ X | Lx ∈ HN (a, b; Rn),

[
f∂,Lx(t)
e∂,Lx(t)

]
∈ kerW

}
, (2.40)

generates a contraction semigroup on X .

Let W̃ be a full rank matrix of size nN × 2nN such that
[

WfW ] is invertible. If we

define the linear mapping C : D(JL) → R
nN (where D(JL) is given in (2.36))

as,

Cx(t) := W̃

[
f∂,Lx(t)
e∂,Lx(t)

]
(2.41)

and the output as
y(t) = Cx(t), (2.42)

then for u ∈ C2(0,∞; RnN ), Lx(0) ∈ HN (a, b; Rn), and Bx(0) = u(0) the fol-
lowing balance equation is satisfied:

d

dt
H(t) =

1

2

d

dt
‖x(t)‖2

L =
1

2

(
uT (t) yT (t)

)
PW,W̃

(
u(t)
y(t)

)
, (2.43)

where

P−1

W,W̃
=

[
W

W̃

]
Σ

[
W

W̃

]T

=

[
WΣWT WΣW̃T

W̃ΣWT W̃ΣW̃T

]
. (2.44)

Furthermore, the invertibility of the matrix
(

WΣW T WΣfW TfWΣW T fWΣfW T

)
is equivalent to

the invertibility of
[

WfW ].
PROOF: We give a sketch of the proof, for details see [LZM05, §4] or the proof
of Theorem 2.10. That we have a boundary control system in the sense of Def-
inition 1.10 follows from Theorem 2.13 and Theorem 2.6 (since W has full row-
rank). The balance equation (2.43) follows by noticing that (the differentiability
follows by using the same ideas as in the proof of Theorem 2.10)

d

dt
‖x(t)‖2

L =
d

dt
〈x(t), x(t)〉L = 〈ẋ(t), x(t)〉L + 〈x(t), ẋ(t)〉L

= 〈J Lx(t), x(t)〉L + 〈x(t),JLx(t)〉L (2.45)

=

[
f∂,Lx(t)
e∂,Lx(t)

]T

Σ

[
f∂,Lx(t)
e∂,Lx(t)

]
,

40



2.3. Parametrization of boundary control systems

and that the relation between the port-variables and the input-output is given by

[
u
y

]
=

[
W

W̃

] [
f∂,x

e∂,x

]
,

where
[

WfW ] is nonsingular. See [LZM05, §4] or [LZM04] for more details.

Remark 2.15. Theorem 2.14 together with equation (2.45) implies that the semi-
group generator AL satisfies (see (2.39))

〈ALx, x〉L =
1

2

(
0 yT

)
PW,W̃

(
0
y

)
∀x ∈ D(AL). ♣

It is easy to see that the system just defined is a dissipative system as described
in Section 1.8. Here the matrix PW,W̃ determines the supply rate of the system

and since it only depends on the matrices W and W̃ we can select a desired
supply rate. The two theorems below described how we can obtain, in particular,
impedance passive and scattering passive systems.

Theorem 2.16 (Impedance energy preserving): Consider the boundary con-

trol system described in Theorem 2.14 and let W and W̃ be nN ×2nN matrices
with W satisfying (2.20) and

[
WfW ] nonsingular. Then for u ∈ C2(0,∞; RnN ),

Lx(0) ∈ HN (a, b; Rn), and Bx(0) = u(0) the following balance equation is sat-
isfied

d

dt
H(t) =

1

2

d

dt
‖x(t)‖2

L = u(t)T y(t)

if and only if the following conditions are satisfied

W = S
[
I + V, I − V

]
, with S nonsingular and V unitary, (2.46)

W̃ = S̃
[
I + Ṽ , I − Ṽ

]
, with S̃ nonsingular and Ṽ unitary, and (2.47)

I = 2S̃(I − Ṽ V T )ST . (2.48)

As a consequence these matrices satisfy

WT W̃ + W̃TW = Σ, (2.49)

where Σ = [ 0 I
I 0 ] is defined in (2.9). Furthermore, under the condition (2.46) the

associated semigroup is unitary and A∗
L = −AL and D(AL) = D(A∗

L).

PROOF: From Theorem 2.14 we see that we only have to check that PW,W̃ equals

[ 0 I
I 0 ]. By (2.44) this is equivalent toWΣWT = W̃ΣW̃T = 0 and W̃ΣWT = I . This
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2. Distributed Parameter Systems Related to Skew-symmetric Operators

follows easily by using the expressions (2.46) and (2.47) for W and W̃ together
with the condition (2.48).

Since PW,W̃ =
[

WfW ]−T
Σ
[

WfW ]−1
equals [ 0 I

I 0 ] we must have

Σ =

[
W

W̃

]T

Σ

[
W

W̃

]
=

[
W

W̃

]T [
W̃
W

]
, (2.50)

from which (2.49) follows.

Theorem 2.17 (Scattering energy preserving): Consider the boundary control

system described in Theorem 2.14 and let W and W̃ be nN × 2nN matrices
with W satisfying (2.20) and

[
WfW ] nonsingular. Then for u ∈ C2(0,∞; RnN ),

Lx(0) ∈ HN (a, b; Rn), and Bx(0) = u(0) the following balance equation is
satisfied

d

dt
H(t) =

1

2

d

dt
‖x(t)‖2

L = ‖u(t)‖2
RnN − ‖y(t)‖2

RnN

if and only if the following conditions are satisfied

W = S
[
I + V, I − V

]
, with 4S(I − V V T )ST = I,

W̃ = S̃
[
−(I + V T ), I − V T

]
, with 4S̃(I − V TV )S̃T = I. (2.51)

As a consequence these matrices satisfy

2WTW − 2W̃T W̃ = Σ, (2.52)

where Σ = [ 0 I
I 0 ] is defined in (2.9).

PROOF: In this case it is easy to check that WΣWT = 1
2I , W̃ΣW̃T = − 1

2I and

WΣW̃T = 0. Hence from (2.44) we obtain PW,W̃ equals
[

2I 0
0 −2I

]
. The result now

follows from Theorem 2.14.

Remark 2.18. Once W =
[
W1, W2

]
is chosen the matrices S and V can be

found easily by

S =
1

2
(W1 +W2), V = (W1 +W2)

−1(W1 −W2).

See Lemma A.1 of [LZM05] for details. ♣

Example 2.19 (Timoshenko beam) Consider the Timoshenko type beam equa-
tions described in Example 1.2. This model can be written as a system (2.1) by
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2.3. Parametrization of boundary control systems

selecting the state variables

x1 = ∂w
∂z − φ : shear displacement,

x2 = ρ∂w
∂t : transverse momentum distribution,

x3 = ∂φ
∂z : angular displacement,

x4 = Iρ
∂φ
∂t : angular momentum distribution.

Then the model of the beam can be rewritten as

∂

∂t




x1

x2

x3

x4


 =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




︸ ︷︷ ︸
P1

∂

∂z




K x1
1
ρ x2

EI x3
1
Iρ
x4


+




0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0




︸ ︷︷ ︸
P0




K x1
1
ρ x2

EI x3
1
Iρ
x4


 .

(2.53)
From here we can see that the operator J is a first order differential operator of
the form (2.2)–(2.3). It thus follows that n = 4, L = diag{K, 1

ρ , EI,
1
Iρ
} > 0, and

P1 is nonsingular. The energy of the system is known to be

E =
1

2

∫ b

a

(
K|x1|2 +

1

ρ
|x2|2 + EI|x3|2 +

1

Iρ
|x4|2

)
dz

=
1

2

∫ b

a

xT (z)(Lx)(z) dz =
1

2
‖x‖2

L , (2.54)

where x = [x1, x2, x3, x4]
T . Note that the energy function under this selection

of state variables does not include derivatives of the energy variables. Hence
we do not need to include derivatives in the definition of the norm of the state
space. This also motivates the selection of the state space (2.33). Next we find the
port-variables which are given by

[
f∂

e∂

]
=

1√
2

[
P1 −P1

I I

] [
(Lx)(b)
(Lx)(a)

]
=

1√
2




(ρ−1x2)(b)−(ρ−1x2)(a)
(Kx1)(b)−(Kx1)(a)

(I−1
ρ x4)(b)−(I−1

ρ x4)(a)

(EIx3)(b)−(EIx3)(a)
(Kx1)(b)+(Kx1)(a)

(ρ−1x2)(b)+(ρ−1x2)(a)
(EIx3)(b)+(EIx3)(a)

(I−1
ρ x4)(b)+(I−1

ρ x4)(a)



. (2.55)

Assume that the beam is clamped at both sides. This corresponds to the follow-
ing boundary conditions (inputs)

1

ρ(a)
x2(a) =

1

Iρ(a)
x4(a) =

1

ρ(b)
x2(b) =

1

Iρ(b)
x4(b) = 0. (2.56)
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Note that this corresponds to setting the velocities at the ends of the beam to
zero. From the equation above we can see that W can be selected as

W =
1√
2




−1 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 1
1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1


 ⇒ WΣWT = 0.

SinceW satisfies the conditions on Theorem 2.14 we have that under this bound-
ary conditions the system (2.53) is a boundary control system. As output we can
choose

y =




−K(a)x1(a)
−(EI)(a)x3(a)
K(b)x1(b)

(EI)(b)x3(b)


 , with W̃ =

1√
2




0 1 0 0 −1 0 0 0
0 0 0 1 0 0 −1 0
0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0


 .

Then, from equation (2.30) we obtain again that

P−1

W,W̃
= PW,W̃ =

[
0 I
I 0

]
,

which, in turn gives from (2.29) that

d

dt
E(t) =

1

2

d

dt
‖x(t)‖2

L =
1

2

[
uT (t) yT (t)

] [ 0 I
I 0

] [
u(t)
y(t)

]
= uT (t) y(t).

Observe that if we let u(t) = 0 for t ≥ 0, then there is no change in the energy of
the system. ∗

2.4. Relation with the characteristic curves

Characteristics curves can be used in the analysis of systems described by PDEs.
In some cases they can be used to find a solution of a given PDE, see [Zau89,
Ch.2 and 3] and [Col04, Ch. 5]. They also help to understand how the Cauchy
data imposed for a given PDE (linear or nonlinear) determines a solution of that
PDE, see [Joh78]. They can even be used for control and disturbance rejection in
BCS, see [BCANM05]. Loosely speaking, the characteristic curves are a family of
curves on which the solution of a given PDE remain constant. In this section we
study the case N = 1 and show that the eigenvalues of the matrix P1 determines
the characteristic curves of the PDE (2.1a). First we introduce some notation and
then we define the characteristic curves.

The notation of multi-indices (Schwartz notation) is very convenient when deal-
ing with PDE’s. A multi-index is a vector α = (α1, α2, . . . , αn) whose compo-
nents are non-negative integers. The notation α ≥ β indicates αi ≥ βi for each i.
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We also have
|α| = α1 + · · · + αn, α! = α1! · · ·αn!;

moreover, for any vector x = (x1, . . . , xn) ∈ R
n, we set

x
α = xα1

1 xα2
2 · · ·xαn

n . (2.57)

The following notation for partial derivatives is very common:

Dα =
∂|α|

∂xα1
1 ∂xα2

2 · · · ∂xαn
n
.

In this notation the general m-th order linear differential equation for a function
u(x1, . . . , xn) takes the form

L(x,D)u =
∑

|α|≤m

Aα(x)Dαu = B(x). (2.58)

The same expression describes the general m-th order system of differential
equations, in this case we interpret u and B as column vectors and Aα as square
matrices.

Definition 2.20. The symbol of the expression L(x,D) as given above is (with the
notation (2.57))

L(x, iξ) :=
∑

|α|≤m

Aα(x)(iξ)α. (2.59)

The principal part of the symbol is

Lp(x, iξ) :=
∑

|α|=m

Aα(x)(iξ)α. (2.60)

♣

In the case of constant parameters, note that the dependance of L and Lp on x,
can be dropped, i.e., L(iξ).

Example 2.21 The symbol of Laplace’s operator ∂2

∂x2
1
+ ∂2

∂x2
2

is −ξ21−ξ22 , the symbol

of the heat operator ∂
∂x1

− ∂2

∂x2
2

is iξ1 + ξ22 , and the symbol of the wave operator

∂2

∂x2
1
− ∂2

∂x2
2

is −ξ21 + ξ22 . For the Laplace and wave operator, the symbols are equal

to their principal parts; the principal part for the heat operator is ξ22 . For the
equation

∂

∂t

[
x1

x2

]
=

[
0 −1
−1 0

]
∂

∂z

[
x1

x2

]
= P1

∂

∂z

[
x1

x2

]
, (2.61)

we have that the principal part and the symbol are given by iξ1I − iξ2P1 =

i
[

ξ1 ξ2

ξ2 ξ1

]
. ∗
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Definition 2.22. Let L be the m-th order differential operator defined in (2.58).
The surface φ(x1, . . . , xn) is a characteristic surface at a point x if φ(x) = 0 and, in
addition,

detLp(x,∇φ) = 0. (2.62)

A surface is called characteristic if it is characteristic at each of its points. ♣

Example 2.23 Consider the surfaces φ1(t, z) = z−c and φ2(t, z) = z−t−c, where
c ∈ R, and the PDE (2.61). Clearly, the surface φ1 = 0 is noncharacteristic since
∇φ1 = [ 0

1 ] and detLp([ t
z ] ,∇φ1) = det [ 0 1

1 0 ] 6= 0. On the other hand, the surface
φ2 = 0 is characteristic since ∇φ2 =

[−1
1

]
and detLp([ t

z ] ,∇φ2) = det
[−1 1

1 −1

]
=

0.

Next consider the heat equation ∂w
∂t − ∂2w

∂z2 = 0. We have that the surfaces φ(t, z) =
t−c are characteristic since ∇φ = [ 1

0 ] and Lp([ t
z ] ,∇φ) = 0. Note that the surfaces

φ2(t, z) = z − c are noncharacteristic since ∇φ2 = [ 0
1 ] and Lp([ t

z ] ,∇φ) = 1. ∗

Now we can describe how the characteristic curves are related to the PDE (2.1a).
As we mention earlier, we study the case N = 1 since in this case the character-
istics are more meaningful. Note that in the case N = 1 the principal symbol of

the PDE (2.1a) is Lp

(
[ t
z ] ,

[
ξ1

ξ2

])
= ξ1I − P1L(z) ξ2 since

∂x

∂t
= P1

∂(Lx)
∂z

+ P0Lx ⇒ ∂x

∂t
− P1L

∂x

∂z
− (P1L′ + P0L)x = 0.

It thus follows from Definition 2.22 that the characteristic surfaces are deter-
mined by the functions φ = 0 which satisfy

detLp ([ t
z ] , ∇φ) = det

(
∂φ

∂t
I − P1L(z)

∂φ

∂z

)
= 0.

Clearly the functions φi = λit + z + k (or equivalently, φi = qit + piz + k
where λi = qi/pi), with k ∈ R and λi(z), i = 1, . . . , n, being an eigenvalue
of P1L(z), are the characteristic surfaces. This follows since ∇φi =

[
λi
1

]
and

detLp ([ t
z ] , ∇φi) = det(λiI − P1L) = 0, see Definition 2.22. Recall that L is

assumed to be continuous and coercive, see Theorem 2.14, and P1 is a constant
symmetric nonsingular matrix. Hence, the eigenvalues of P1L are continuous
functions of z and, moreover, we must have that either λi > 0 or λi < 0, for
i = {1, 2, . . . , n}. In fact, since L is coercive, the number of positive and neg-
ative eigenvalues of P1L is the same as those of P1. We can thus conclude,
see [Zau89, Ch.2 and 3] and [Col04, Ch. 5], that if the eigenvalue λi satisfies
λi < 0, then the characteristics move in the direction shown in Figure 2.1, i.e., the
eigenvalue determines the slope of the characteristic curves. The main point of
finding the characteristic curves is that the solution remains constant along this
lines, see [Zau89] or [Col04]. Hence, if we know the solution of a PDE along a
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noncharacteristic surface, then we can determine the solution in the whole (z, t)-
plane (this is one of the ideas in the proof of Holmgren’s theorem, see [Joh78]).
From all this we can conclude that the number of negative eigenvalues of P1 (since L
is coercive) determine the number of boundary conditions imposed on z = a and the
number of positive eigenvalues determine the number of boundary conditions on z = b.

z − c t = −k

z − c t = 0

z − c t = k

z

t

Figure 2.1.: Characteristic curves in the (z, t)-plane.

2.5. Properties of the semigroup generator

The validity of the conditions in Theorem 2.13 for the operator AL guarantees the
existence of a unique solution for the PDE (2.1) when the input u is set to zero.
Later we show that a deeper study of this operator can lead to the establish-
ment of other attributes of the system (2.1) such as stability and controllability,
see [CZ95b] for more details on the general theory around this. In this section
we study some properties of the operator AL which are useful to prove results
presented in the later chapters.

2.5.1. Adjoint operator

Here we present the expression that determines the adjoint operator of AL, i.e.,
A∗

L. We represent this operator in terms of the matrices S and V that determines
W , see (2.20). The proof of this result is based on equation (2.21). Recall that the
matrix W satisfies WΣWT ≥ 0 if and only if it can be parameterized as equa-
tion (2.20). First we give the definition of the adjoint of an unbounded operator.
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The adjoint operator is defined by

A∗
Lu = {w ∈ L2(a, b)

n | ∀ y ∈ D(AL) we have 〈ALy, u〉L = 〈y, w〉L} , (2.63a)

with domain

u ∈ D(A∗
L) ⇐⇒ ∃w ∈ L2(a, b)

n s.t. ∀ y ∈ D(AL) we have 〈ALy, u〉L = 〈y, w〉L .
(2.63b)

Using this we proceed to find A∗
L.

Theorem 2.24: Let W = S
[
I + V, I − V

]
where V ∈ R

nN×nN satisfies
V V T ≤ I and S ∈ R

nN×nN is nonsingular. Consider the operator AL as de-
scribed in Theorem 2.13 on the state space X given by (2.33). Then the adjoint
of AL is given by

A∗
L x = −JLx (2.64)

and

D(A∗
L) =



x ∈ X

∣∣∣
Lx ∈ HN (a, b; Rn),[

f∂,Lx

e∂,Lx

]
∈ ker

[
−(I + V T ), I − V T

]


 . (2.65)

PROOF: The proof follows the same lines as the proof of Lemma 4.1 of [LZM04].
By noticing that every function onHN (a, b)n, say Ly, which is zero at the bound-
ary is in the domain of AL and by using (2.63), i.e., 〈ALy, u〉L = 〈J Ly,Lu〉 =
〈y, w〉L = 〈Ly, w〉, it is easy to show that every Lu ∈ D(A∗

L) must be an element
ofHN (a, b)n. Thus we can use (2.35), from which we can write for all x1 ∈ D(AL)
and x2 ∈ D(A∗

L)

〈ALx1, x2〉L = 〈J Lx1, x2〉L = −〈x1,JLx2〉L +

[
f∂,Lx1

e∂,Lx1

]T

Σ

[
f∂,Lx2

e∂,Lx2

]
,

where Σ is given in (2.9). Since
[

f∂,Lx1
e∂,Lx1

]
lies in the kernel of W we get, from

equation (2.21), that
[

f∂,Lx1
e∂,Lx1

]
=
[

I−V
−(I+V )

]
l for some l ∈ R

nN . Hence

〈ALx1, x2〉L = 〈x1,−JLx2〉L + lT
[
I − V T , −(I + V T )

]
Σ

[
f∂,Lx2

e∂,Lx2

]

= 〈x1,−JLx2〉L + lT
[
−(I + V T ), I − V T

] [ f∂,Lx2

e∂,Lx2

]
.

Using the defining condition (2.63) and the fact that the equality above must hold
for all l ∈ R

nN , we conclude that
[
f∂,Lx2

e∂,Lx2

]
∈ ker

[
−(I + V T ), I − V T

]
and A∗

L x2 = −JLx2.
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This concludes the proof.

2.5.2. Spectrum and compactness of the resolvent operator

In this section we study the spectrum and the resolvent operator of AL. First we
look at the eigenvalues and then we show that the resolvent operator is compact,
which gives that the spectrum is comprised only of eigenvalues and the only
accumulation point is at infinity.

As mentioned, we begin with the study of the eigenvalues of AL. Since AL
generates a contraction semigroup we know that Re 〈ALx, x〉L ≤ 0 for all x ∈
D(AL). Let x1 be any eigenvector of AL with corresponding eigenvalue λ. Then
we have that

0 ≥ Re 〈ALx1, x1〉L = Re 〈ALx1,Lx1〉 = Re 〈λx1,Lx1〉 = Reλ 〈x1,Lx1〉 .
This implies (by the coercivity of L) that all eigenvalues of AL satisfy Reλ ≤ 0.

To prove the compactness of the resolvent operator we will make use of the fol-
lowing theorem, which is taken from [NS00, Theorem 7.6.4]. In this theorem, a
Banach space Xi with norm ‖·‖i is denoted by (Xi, ‖·‖i).

Theorem 2.25: Let (X1, ‖·‖1) be compact in (X2, ‖·‖2), where (X2, ‖·‖2) is a Ba-
nach space and let T be a linear operator on X2. Assume that the domain D(T )
lies in X1. If T satisfies ‖Tx‖2 ≥ a ‖x‖1 for some a > 0 and all x ∈ D(T ), then
T−1 exist and is a compact operator. Furthermore, there are constants A, B
such that ∥∥T−1y

∥∥
1
≤ A ‖y‖2 ,

∥∥T−1y
∥∥

2
≤ B ‖y‖2 ,

for all y ∈ D(T ).

First we prove the result for L = I and then we extend the result including the
operator L. So, we first assume that L = I . In this case the semigroup generator
is described in Theorem 2.8. From this, we can see that the domain of AL = A
lies in HN (a, b)n. The main property that is used to prove the compactness of
the resolvent operator is that the imbedding of HN (a, b) into L2(a, b) = H0(a, b)
is compact.

Theorem 2.26: Consider the operator A as described in Theorem 2.8 on the
state space L2(a, b; R

n). If W satisfies WΣWT ≥ 0, then the resolvent operator
(λ−A)−1, for λ ∈ ρ(A), is a compact operator. As a consequence, the spectrum
of A, σ(A), consists only of isolated eigenvalues with finite multiplicity. That
is, σ(A) = σp(A).
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PROOF: In the notation of Theorem 2.25 we clearly have, in this case, that X1 =
HN (a, b)n and X2 = L2(a, b)

n. That HN (a, b)n is compact in L2(a, b)
n follows

from Theorem 2 and Remark 5 on pages 124 and 117, respectively, of [DL85a];
see also [Aub00, Proposition 7.5.3].

We want to prove that the resolvent of A is compact for all λ > 0, and hence for
all λ ∈ ρ(A). Since A generates a contraction semigroup, we know that λ > 0 is
in the resolvent set of A. Thus, T = (λ−A) is boundedly invertible and hence it
satisfies ‖Tx‖L2(a,b) ≥ a ‖x‖HN (a,b) for all x ∈ D(A), see [NS00, §7.6]. Thus, the

result follows from Theorem 2.25. The assertion on the spectrum of A follows
from [Kat95, Th.6.29, ch3].

The extension to the operator AL follows easily from the following lemma.

Lemma 2.27: Let X be a Hilbert space and A and L be operators on X . Further-
more, assume that L ∈ L(X) is boundedly invertible and that A has compact
resolvent. If (I − AL) with domain {x ∈ X | Lx ∈ D(A)} is boundedly invert-
ible, then (I −AL)−1 is compact. ♥
PROOF: We must prove that

(I −AL)−1xn = yn (2.66)

has a converging subsequence for every bounded sequence xn, see Theorem 8.1-
3 of [Kre89]. Let α ∈ ρ(A). Then

xn = (I −AL)yn = (I − αL+ αL−AL)yn

= (αI −A)Lyn + (I − αL)yn.

Or equivalently,
Lyn = (αI −A)−1[xn − (I − αL)yn].

Since (I −AL) is boundedly invertible, we have that {yn} is bounded, see (2.66).
Hence xn − (I − αL)yn is a bounded sequence. Since (αI − A)−1 is compact
(by assumption), {Lyn} has a convergent subsequence. Using the fact that L is
boundedly invertible, gives that {yn} has a convergent subsequence.

Recall that AL generates a contraction semigroup and hence I − AL is bound-
edly invertible. Hence, combining the lemma above with Theorem 2.26 gives the
following result.

Theorem 2.28: Consider the operator AL as described in Theorem 2.13 on the
state space X given by (2.33). If W satisfies WΣWT ≥ 0, then the resolvent
operator (λ − AL)−1, for λ ∈ ρ(AL), is a compact operator. As a consequence,
the spectrum of AL, σ(AL), consists only of isolated eigenvalues with finite
multiplicity. That is, σ(AL) = σp(AL).
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2.6. System nodes and boundary control systems

In this section we study the relation between the system node and boundary
control systems and we describe how to write the class of boundary control sys-
tems (2.1) as a system node.

The system node is another possibility to represent infinite-dimensional systems
and several results for systems described by the system node are available in the
literature. See for instance [Sta05], [Sta02], [MSW03] and the references therein.
Thus, writing a boundary control system as a system node allows us to apply
the available results for system nodes to the BCS. We begin by giving a brief
description of system nodes.

2.6.1. System nodes

Many finite- and infinite-dimensional linear systems can be described by the
equations

ẋ(t) = Ax(t) +B u(t)

y(t) = C x(t) +Du(t), t ≥ 0, (2.67)

x(0) = x0

where u(t) ∈ U , x(t) ∈ X and y(t) ∈ Y with the input space U , the state space
X and the output space Y , being Hilbert spaces. The operator A is generally the
generator of a C0-semigroup. Here the operators B and C are not necessarily
bounded.

The system node (see [Sta05], [MSW03, §2]) has been introduced as a general-
ization of this set of equations. The system node can be thought of as the block
operator S =

[
A&B
C&D

]
fromX×U toX×Y , which allows to rewrite equation (2.67)

as follows [
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ 0, x(0) = x0.

However, it is not obvious how to represent boundary control systems of the
form (2.1) either as the set of equations (2.67) or as a system node. This section
describes how to formulate boundary control system (BCS) as a system node.
First we introduce some functional spaces which are needed in the rest of this
section.

Proposition 2.29 (Proposition 2.1, [MSW03]): Let X be a Hilbert space and let
A : D(A) ⊂ X → X be a closed, densely defined linear operator with a
nonempty resolvent set ρ(A). Take α ∈ ρ(A).
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(i) Let X1 = D(A) and define ‖x‖X1
= ‖(α−A)x‖X . Then ‖·‖X1

is a norm on
X1 which makes X1 into a Hilbert space, and A ∈ L(X1;X). The operator
(α−A)−1 maps X isometrically onto X1.

(ii) Let X−1 be the completion of the space X with respect to the norm
‖x‖X−1

=
∥∥(α−A)−1x

∥∥
X

. Then X is continuously and densely embed-

ded in X−1, and A has a unique extension to an operator Ae in L(X;X−1).
The operator (α − Ae)

−1 maps X−1 isometrically onto X . Moreover, Ae

and A are unitarily similar: Ae = (α−Ae)A(α−Ae)
−1.

(iii) If A is the generator of a C0-semigroup T(t) on X , then the restriction
T1(t) = T(t)|X1

of T(t) toX1 is a C0-semigroup onX1. The semigroup T(t)
has a unique extension to a C0-semigroup Te(t) on X−1 which is unitarily
similar to T(t), since Te(t) = (α−Ae)T(t)(α−Ae)

−1. ♥

Notice that X1 ⊂ X ⊂ X−1 with continuous and dense embedding. Often X−1

is defined in an equivalent form as the dual of D(A∗). Dual version of the spaces
X1 and X−1 can also be constructed by replacing A with the adjoint, A∗, of A.
The resulting spaces are denoted by Xd

1 (the equivalent of X1) and by Xd
−1 (the

equivalent of X−1) respectively. It can be checked that Xd
−1 is the dual of X1

with respect to the pivot space X . Likewise, Xd
1 is the dual of X−1. Thus,

A∗
e ∈ L(X;Xd

−1) can be interpreted as the (bounded) adjoint of the operator
A ∈ L(X1;X).

Now it is possible to define the system node as follows

Definition 2.30 (Malinen et al. [MSW03]). Let U , X and Y be Hilbert spaces.
An operator

S :=

[
A&B
C&D

]
: D(S) →

[
X
Y

]

is called an operator node on (U,X, Y ) if it has the following structure:

(i) The operator A defined by Ax = A&B [ x
0 ] on D(A) = {x ∈ X | [ x

0 ] ∈
D(S)} is a densely defined operator on X with a nonempty resolvent set
(which we extend to an operator Ae ∈ L(X;X1) as explained in Proposi-
tion 2.29);

(ii) B ∈ L(U ;X−1);

(iii) D(S) =

{[
x
u

]
∈
[
X
U

] ∣∣∣∣ Aex+Bu ∈ X

}
, and A&B = [Ae, B]|D(S);

(iv) C&D ∈ L(D(S);Y ) with respect to the graph norm of A&B (with values
in X): ∥∥∥∥

[
x
u

]∥∥∥∥
2

D(S)

:= ‖x‖2
X + ‖u‖2

U + ‖Aex+Bu‖2
X . (2.68)
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2.6. System nodes and boundary control systems

If in addition to the above, A generates a C0-semigroup on X , then S is called a
system node. ♣

Here we call A ∈ L(X1,X) the main operator of the node, B ∈ L(U,X−1) is its
control operator, and C&D ∈ L(D(S), Y ) is its combined observation/feedthrough
operator. From the last operator we can extract C ∈ L(X1, Y ), the observation
operator of S, defined by

Cx := C&D

[
x
0

]
, x ∈ X1. (2.69)

From the boundedness of the operators Ae and B combined with the character-
ization of D(S) it is easy to see that the operator A&B : D(S) → X is a closed
operator. Hence D(S) is a Hilbert space in the A&B-graph norm. Also one can
verify that C&D : D(S) → Y is a closed operator (where D(S) is considered
with respect to the A&B-graph norm). From this it follows that the system node
S is a closed operator.

Next we show that D(S) is dense in [ X
U ]. First observe that

[
(α−Ae)−1B

I

]
u ∈

D(S) since by the characterization of D(S) given in Proposition 2.29 gives

Ae(α−Ae)
−1Bu+Bu = α(α−Ae)

−1Bu ∈ X.

It is then easy to see that
[

X1
0

]
∈ D(S) and hence

[
X1
0

]
+
[

(α−Ae)−1B
I

]
U ∈ D(S).

From this follows that D(S) is dense in [ X
U ] since X1 is dense in X .

It is known (see, for instance, [MSW03]) that if the operator A is the generator of
a C0-semigroup then S defines a linear dynamical system as follows

Lemma 2.31 ([MSW03]): Let S be a system node on (U,X, Y ) as described in
Definition 2.30 . Let u ∈ C2([0,∞);U) and

[ x0

u(0)

]
∈ D(S). Then the equation

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ 0, x(0) = x0,

has a unique (classical) solution [ x
y ] satisfying x ∈ C1([0,∞);X)∩C2([0,∞);X−1),

[ x
u ] ∈ C([0,∞);D(S)), and y ∈ C([0,∞);Y ). ♥

2.6.2. Relation of system nodes and BCS

Now that the system node and BCS were introduced, it is possible to present
some results which relate both representations. The rest of this subsection can be
considered as an extension of the results presented in [VZL05a].

Observe that it is not obvious how to find the B operator in the case of boundary
control system as defined in Section 1.5. For those cases the lemma below gives
an answer. A similar result is also given in [ET00].
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Lemma 2.32: In the case of boundary control systems as defined in Section 1.5
we have that the operator B in Definition 2.30 of the system node can be de-
scribed by

B u = ARu−AeRu, (2.70)

where A, R are described in Section 1.5 and Ae in Proposition 2.29. ♥

PROOF: Let x ∈ D(A∗) and w(t), t ≥ 0, be a solution of (1.26) with w0 = w(0)
and w0 − Ru(0) ∈ D(A). Then using equation (3.46) of [CZ95b] we have for
u ∈ C2(0, t;U)

〈x,w(t)〉 = 〈x,Ru(t)〉 − 〈x,T(t)Ru(0)〉 + 〈x,T(t)w0〉

−
〈
x,

∫ t

0

T(t− s)R u̇(s) ds

〉
+

〈
x,

∫ t

0

T(t− s)ARu(s) ds

〉
.

Without loss of generality we can assume that w0 = 0. The above equation can
also be written as follows

〈x,w(t) 〉 = 〈x,Ru(t) 〉 − 〈x,T(t)Ru(0) 〉 −
∫ t

0

〈x,T(t− s)R u̇(s) 〉 ds

+

∫ t

0

〈x,T(t− s)ARu(s) 〉 ds

= 〈x,Ru(t) 〉 − 〈T∗(t)x,Ru(0) 〉 −
∫ t

0

〈T∗(t− s)x,R u̇(s) 〉 ds

+

∫ t

0

〈T∗(t− s)x,ARu(s) 〉 ds.

By using integration by parts and the properties of the semigroup (cf. [CZ95b,
§2.1]) yields

〈x,w(t) 〉 = 〈x,Ru(t) 〉 − 〈T∗(t)x,Ru(0) 〉 − 〈T∗(t− s)x,Ru(s) 〉
∣∣∣
s=t

s=0

−
∫ t

0

〈T∗(t− s)A∗ x,Ru(s) 〉 ds+

∫ t

0

〈T∗(t− s)x,ARu(s) 〉 ds

= 〈x,Ru(t) 〉 − 〈T∗(t)x,Ru(0) 〉 − 〈x,Ru(t) 〉 + 〈T∗(t)x,Ru(0) 〉

−
∫ t

0

〈T∗(t− s)A∗ x,Ru(s) 〉 ds+

∫ t

0

〈T∗(t− s)x,ARu(s) 〉 ds

= −
∫ t

0

〈T∗(t− s)A∗ x,Ru(s) 〉 ds+

∫ t

0

〈T∗(t− s)x,ARu(s) 〉 ds

=

∫ t

0

〈〈T∗(t− s)x,B u(s)〉〉D(A∗) ds (2.71)
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where 〈〈·, ·〉〉D(A∗) is the duality product of D(A∗) and D(A∗)′, and we have de-

fined1

〈〈x,B u〉〉D(A∗) = −〈A∗x,Ru〉 + 〈x,ARu〉
= −〈x,AeRu〉 + 〈x,ARu〉 . (2.72)

Now using the extension of the C0-semigroup to X−1 we obtain from (2.71) that

〈x,w(t) 〉 =

〈〈
x,

∫ t

0

Te(t− s)B u(s) ds

〉〉

D(A∗)

, ∀x ∈ D(A∗). (2.73)

Thus, in general, the expression above shows that w(t) can be represented on
X−1 by

w(t) = Te(t)w0 +

∫ t

0

Te(t− s)B u(s) ds. (2.74)

Since w(t) is the solution of (1.26), the equation above is just another way of
expressing the solutions of the boundary control problem (1.26). In fact, this
formula makes sense even for w0 ∈ X−1 and u(·) ∈ L2(0, t;U). Consequently,
under these weaker assumptions, equation (2.74) can be seen as a mild solution
of the following differential equation on X−1

ẇ(t) = Aew(t) +Bu(t), w(0) = w0, t ≥ 0.

The result follows from this.

Remark 2.33. In [Opm05], the operator B is defined as B = Ax− Aex for given
u ∈ U and a x ∈ X such that Bx = u. This corresponds to the same description
given in (2.70) since R is the right inverse of B. ♣
Remark 2.34. Observe that using equation (2.72) we can compute B with A∗

instead of Ae, which avoids the need of finding Ae. ♣

In order to prove that this B is really the control term of a system node is nec-
essary to prove that B ∈ L(U,X−1) (see Definition 2.30.(ii)). This follows easily
from equation (2.72) or it can also be proved as follows.

Lemma 2.35: The operator B described in Lemma 2.32, i.e., B = −AeR + AB,
belongs to L(U,X−1). ♥
PROOF: This follows from the facts that R, AR ∈ L(U,X) and Ae ∈ L(X,X−1)
since

‖Bu‖X−1
= ‖−AeRu+ ARu‖X−1

≤ ‖−AeRu‖X−1
+
∥∥(α−A)−1ARu

∥∥
X

≤ k1 ‖Ru‖X + k2 ‖ARu‖X

≤ k ‖u‖U .

1Observe that 〈A∗x, w〉 = 〈x, Aw〉 only if w ∈ D(A), if not 〈A∗x, w〉 = 〈〈x, Aew〉〉D(A∗).
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Regarding the characterization of D(S) as described in Definition 2.30.(iii) the
following result gives a convenient representation for this domain, which also
avoids Ae.

Lemma 2.36: Consider a boundary control system as defined in Section 1.5 and
the domain D(S) as described in Definition 2.30.(iii). Then, we have that the
condition Aex+Bu ∈ X is equivalent to the condition (x− Ru) ∈ X1. That is

Aex+Bu ∈ X ⇐⇒ x− Ru ∈ X1. (2.75)

Furthermore the A&B norm (with values in X) given by (2.68) is equivalent to
the norm

‖x‖2
X + ‖u‖2

U + ‖x− Ru‖2
X1
. ♥

PROOF: First we prove condition (2.75). Let Aex+Bu ∈ X . Then we have that

Aex+Bu ∈ X ⇐⇒ (α−Ae)
−1(Aex+Bu) ∈ D(A)

⇐⇒ (α−Ae)
−1Aex+ (α−Ae)

−1Bu ∈ D(A)

⇐⇒ (α−Ae)
−1Aex+ (α−Ae)

−1(−AeRu+ ARu) ∈ D(A)

⇐⇒ (α−Ae)
−1Ae(x− Ru) + (α−Ae)

−1ARu ∈ D(A). (2.76)

Recall that AR ∈ L(U,X) and observe that when (α − Ae)
−1 is restricted to X

is equal to the inverse of the resolvent of the semigroup generator, (α − A)−1.
We thus have that (α − Ae)

−1ARu ∈ D(A) and hence the condition (2.76) is
equivalent to

Aex+Bu ∈ X ⇐⇒ (α−Ae)
−1Ae(x− Ru) ∈ D(A)

⇐⇒ Ae(x− Ru) ∈ X

⇐⇒ (x− Ru) ∈ D(A) = X1.

Next we prove the equivalence of the norms. We have that

‖Aex+Bu‖X =
∥∥(α−Ae)(α−Ae)

−1(Aex+Bu)
∥∥

X
.

Since (Aex + Bu) ∈ X we have that (α − Ae)
−1(Aex + Bu) ∈ D(A) = X1 and

since (α−Ae)D(A) = (α−A)D(A) we get from the equation above that

‖Aex+Bu‖X =
∥∥(α−Ae)

−1(Aex+Bu)
∥∥

X1

=
∥∥(α−Ae)

−1Aex+ (α−Ae)
−1(−AeRu+ ARu)

∥∥
X1

(see (2.70))

≤
∥∥(α−Ae)

−1Ae(x− Ru)
∥∥

X1
+ ‖ARu‖X

=
∥∥(α−Ae)

−1(Ae − α+ α)(x− Ru)
∥∥

X1
+ ‖ARu‖X

≤‖x− Ru‖X1
+ |α| ‖x− Ru‖X + c1 ‖u‖U

≤‖x− Ru‖X1
+ |α| ‖x‖X + c2 ‖u‖U . (2.77)
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Now let (x− Ru) ∈ D(A) and observe that

‖x− Ru‖X1
= ‖(α−A)(x− Ru)‖X = ‖(α−Ae)(x− Ru)‖X

= ‖αx− αRu−Aex+AeRu‖X

≤ |α| ‖x‖X + c3 ‖u‖U + ‖Aex−AeRu‖X

= |α| ‖x‖X + c3 ‖u‖U + ‖Aex−AeRu+ ARu− ARu‖X

≤ |α| ‖x‖X + c3 ‖u‖U + ‖Aex+Bu‖X + ‖ARu‖X (see (2.70))

≤ |α| ‖x‖X + c4 ‖u‖U + ‖Aex+Bu‖X . (2.78)

From equations (2.77) and (2.78) we can clearly obtain the equivalence of the two
norms.

We have now an idea of how to construct the system node for general boundary
control systems. Next we focus on the class of systems described by (2.1) and
show that there is a one to one correspondence between a system node and this
BCS. In particular, the following theorem shows how to represent the boundary
control systems described in Theorem 2.14 as a system node.

Theorem 2.37: Consider a BCS as described in Theorem 2.14 and letD(JL) be
given by (2.36). Then the operator Sb =

[
A&B
C&D

]
described by

A&B

[
x
u

]
= JLx

C&D

[
x
u

]
= W̃

[
f∂,Lx

e∂,Lx

] (2.79)

with domain

D(Sb) =

{[
x
u

]
∈
[
X
U

] ∣∣∣Lx ∈ HN (a, b; Rn), W

[
f∂,Lx

e∂,Lx

]
= u

}

=

[
1
B

]
D(JL) (2.80)

(where B is defined in Theorem 2.14) is a system node. Furthermore, (u, x, y)
with u ∈ C2(0,∞; RnN ), Lx(0) ∈ HN (a, b; Rn), and Bx(0) = u(0) (or equiva-

lently,
[

x(0)
u(0)

]
∈ D(Sb)) is a solution of the BCS in Theorem 2.14 if and only if

this (u, x, y) is a solution of the system

[
ẋ(t)
y(t)

]
= Sb

[
x(t)
u(t)

]
, t ≥ 0.
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PROOF: First note that with respect to the notation of Section 1.5 we have A =

JL, D(A) = D(B) = D(JL) (with D(JL) given in (2.36)), Bx = W
[

f∂,Lx
e∂,Lx

]
=

WRext τ(Lx), R is a right inverse of the boundary operator B, U = R
nN , and X

is given by (2.33).

We construct the system node by checking the conditions on Definition 2.30. We
know that the main operator A (the semigroup generator) is obtained by setting
u = 0, see Definition 2.30.(i). Following Theorem 2.14 we know that A = AL =
JL|D(AL), and thus condition i in Definition 2.30 is proved.

From Lemma 2.32 we know that for any BCS the corresponding B operator on
Definition 2.30.(ii) is given by equation (2.70), see also Lemma 2.35.

Next we check condition iii. The domain of the system node corresponding to
any BCS is given by, see Definition 2.30.(iii) and Lemma 2.36,

D(Sb) =

{[
x
u

]
∈
[
X
U

] ∣∣∣x− Ru ∈ X1 = D(AL)

}
.

But the condition x−Ru ∈ X1 = D(AL) implies Lx ∈ HN (a, b)n (note that Ru ∈
D(A) = D(JL) and hence if x− Ru ∈ X1 we must have Lx, LRu ∈ HN (a, b)n)
and

0 = W

[
f∂,L(x−Ru)

e∂,L(x−Ru)

]
= WRext τ(L(x− Ru))

⇒ WRext τ(Lx) = WRext τ(LRu)

⇒ W

[
f∂,Lx

e∂,Lx

]
= u,

since R is the right inverse of WRext τ(L ·), see Definition 1.10. From this it is
clear that D(Sb) is given by (2.80). Also it is easy to see from the surjectivity of
B that any [ x

u ] ∈ D(Sb) can be written as [ 1
B

]D(JL). Now we need to find the
expression for [Ae, B]|D(Sb) (recall that Ae is the extension of A to X). To find
the expression for A&B observe that R ∈ L(U,D(JL)) and B ∈ L(D(JL), U)
satisfy BR = IU . It follows that the operator P = RB is a projection onto
D(JL) = D(A) since P 2 = RBRB = RB = P . This gives that the operator B
of Lemma 2.32 satisfies

BB = JL −Ae |D(A),

whereAe is the extension of AL toX . Then, since any [ x
u ] ∈ D(Sb) can be written

as [ 1
B

]D(A) we obtain (the top equation in (2.79))

A&B

[
x
u

]
= [Ae, B]|D(Sb)

[
x
u

]
= Ae |D(A)x+BBx = JLx.

Hence we have proved condition iii.
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The only thing left is to prove the boundedness of the operator C&D. To do so,
we first prove that ‖Lx‖HN (a,b)n ≤ ‖x‖X1

for all x ∈ X1 (recall that D(AL) =

X1). This follows by using the fact that (I −A) ∈ L(HN (a, b)n,X) is a bounded
bijection, and hence it has a bounded inverse in L(X,HN (a, b)n), where A is the
operator described in Section 2.3.1. Indeed, using this we get

‖Lx‖HN (a,b)n =
∥∥(I −A)−1(I −A)Lx

∥∥
HN (a,b)n ≤ c1 ‖(I −A)Lx‖X

≤ c2
(
‖x‖X + ‖ALx‖X

)
∀x ∈ X1,

where c1 and c2 are positive real constants. Note that x ∈ X1 if and only if
Lx ∈ D(A) and that ALx = ALx for any x ∈ D(AL). Thus the equation above is
the same as

‖Lx‖HN (a,b)n ≤ c2
(
‖x‖X + ‖ALx‖X

)
∀x ∈ X1.

Since the graph norm is equivalent to the X1-norm we conclude from the equa-
tion above that ‖Lx‖HN (a,b)n ≤ c ‖x‖X1

for all x ∈ X1 and some c ∈ R+. Using

this we obtain for all [ x
u ] ∈ D(S)

∥∥∥∥C&D

[
x
u

]∥∥∥∥
U

=
∥∥∥W̃Rext τ(Lx)

∥∥∥
U
≤ ‖Lx‖HN (a,b)n

≤ c1
(
‖L(x− Ru)‖HN (a,b)n + ‖LRu‖HN (a,b)n

)

≤ c
(
‖x− Ru‖X1

+ ‖u‖U

)
,

where we used the boundedness of the boundary trace operator, see Theo-
rem 2.6, and the fact that (x − Ru) ∈ X1. The desired result follows now from
Lemma 2.36.

The final claim about the equivalence of solutions follows immediately from
equation (2.79), see [MS06].
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Chapter 3

Energy Preserving and Conservative
Systems

In the previous chapter we described how to obtain energy preserving systems
for a class of boundary control systems related to a skew-symmetric operator J ,
see Theorem 2.14. In this chapter we continue studying the same class of sys-
tems. However, we mainly focus on impedance and scattering energy preserv-
ing systems as described in Theorems 2.16 and 2.17. In particular we show that
they are in fact conservative systems using the concept of a system node. Also,
we investigate the relation between stability, controllability and observability for
these two classes, which will help us to prove this properties in the forthcoming
chapters. We start by briefly introducing the concepts of observability, control-
lability and a stronger version of well-posedness. Then, we study impedance
energy preserving systems as obtained in the previous chapter, followed by scat-
tering energy preserving systems. In particular, we show that those two classes
of systems (as obtained in Chapter 2) are also conservative. Finally, we describe
how we could deal with other other supply rates.

In this chapter we follow closely the notation of Section 2.6.1. In particular, we
write A for the main operator of the system node, as well as its extension Ae, see
Proposition 2.29. The same applies to the semigroup T.

3.1. Observability, controllability and well-posedness

In this subsection we briefly describe some concepts that are important in the
theory of linear infinite dimensional systems. These notions presented here are
all well known and can be found easily in the literature. For more details and in-
formation we refer, for instance, to [WT03], [TW03], [JZ02a], or [Sta05]. We start
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3. Energy Preserving and Conservative Systems

with the notion of well-posed systems. The class of well-posed infinite dimen-
sional linear systems was first introduced by Salamon and Weiss in the late 80’s,
see [Sal89] or [Wei89]. The aim was to provide a mathematical framework for the
systematic description, analysis and control of systems described by partial dif-
ferential equations. The definition below is an adaptation to the class of bound-
ary control systems studied here. Roughly speaking a system is well-posed (in
the sense of Weiss and Salamon) if for every locally square integrable input and
every initial condition there exists a well-defined solution such that the output
is locally square integrable. For our class of systems this is formalized in the fol-
lowing definition. (Note that D(AL) ⊂ D(JL), where D(JL) is given by (2.36).)

Definition 3.1. Consider the system described in Theorem 2.14 and let tf > 0.
We say that the system is well-posed in the sense of Weiss and Salamon if the follow-
ing holds:

• The operator AL is the infinitesimal generator of a C0-semigroup on the
space L2(a, b; Rn).

• There exists an m > 0 such that the following inequality holds for all u ∈
C2([0, tf ); Rn) and x0 ∈ D(JL) such that u(0) = Bx0

‖x(tf )‖2
L +

∫ tf

0

‖y(t)‖2dt ≤ m

[
‖x0‖2

L +

∫ tf

0

‖u(t)‖2dt

]
. (3.1)

♣

For brevity we say that a system is well-posed when no confusion may arise.
Since the spaces D(JL) and C2([0, tf ); Rn) are dense linear subspaces of the
spaces L2(a, b; Rn) and L2([0, tf ); Rn), respectively, we find that if (3.1) holds for
all x0 ∈ D(JL) and r ∈ C2([0, tf ),Rn), then (3.1) holds for all x0 ∈ L2(a, b; Rn)
and r ∈ L2([0, tf ); Rn). Hence if the system is well-posed, then it has for every
initial condition and every square integrable input a unique (mild) solution, and
(3.1) still holds.

Recall that the growth bound of a strongly continuous semigroup T is

ω0(T) = lim
t→∞

1

t
log ‖T(t)‖ = inf

t>0

1

t
log ‖T(t)‖ .

In this case, for all ω > ω0(T) there exists a constant Mω such that ∀ t ≥ 0 the
semigroup T satisfies ‖T(t)‖ ≤Mωeωt, see for example [CZ95b, §2.1].

Definition 3.2. The semigroup T on a Hilbert space X is exponentially stable if
its growth bound is negative, i.e., ω0(T) < 0. Equivalently, there exist positive
constants M and α such that ‖T(t)‖ ≤ Me−αt. T is asymptotically (or strongly)
stable if

lim
t→∞

‖T(t)x0‖ = 0 ∀x0 ∈ X.

Finally, T is weakly stable if limt→∞ 〈T(t)x0, y0〉 = 0, for all x0, y0 ∈ X . ♣
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3.1. Observability, controllability and well-posedness

Next we introduce the concept of admissible control and observation operators.

Definition 3.3 (Jacob and Zwart [JZ02b]). Following the notation of Sec-
tion 2.6.1 we define the following operators.

(1) Let B ∈ L(U,X−1). For t ≥ 0 we define the operator Bt : L2(0,∞;U) →
X−1 by

Btu :=

∫ t

0

T(t− τ)Bu(τ) dτ.

ThenB is called an admissible control operator for T(t) if, for some (and hence
for any) t > 0, Bt ∈ L(L2(0,∞;U),X).

(2) Let B be an admissible control operator for T(t). B is called an infinite-
time admissible control operator for T(t) if T(·)Bu(·) : [0,∞) → X−1 is in-
tegrable for every u ∈ L2(0,∞;U), and the operator B∞ : L2(0,∞;U) →
X−1, given by

B∞u := lim
t→∞

∫ t

0

T(τ)Bu(τ) dτ,

satisfies B∞ ∈ L(L2(0,∞;U),X).

(3) Let C ∈ L(X1, Y ). Then C is called an admissible observation operator for
T(t) if, for some (and hence any) t > 0, there is some K > 0 such that

‖CT(·)x0‖L2(0,t) ≤ K ‖x0‖X , ∀x0 ∈ D(A).

(4) Let C be an admissible observation operator for T(t). We call C an
infinite-time admissible observation operator if there is some K > 0 such that

‖CT(·)x0‖L2(0,∞) ≤ K ‖x0‖X , ∀x0 ∈ D(A). ♣

In other words, B is an admissible control operator if the following property
holds: If x ∈ X−1 is a solution of ẋ(t) = Aex(t) + Bu(t) with x(0) = x0 ∈ X
and u ∈ L2(0,∞;U), then x(t) ∈ X for all t ≥ 0. In this case, x is a continuous
X-valued function of t and

x(t) = T(t)x0 + Btu,

where Bt is defined by (compare with equation (2.73))

Btu :=

∫ t

0

T(t− τ)Bu(τ) dτ.

The above integration is done in X−1, but the result is in X . The admissibility
of B is also equivalent to the range of Bt being in X for some t > 0. If T(t) is
exponentially stable, then the two notions of admissibility coincide. Moreover,
B is an (infinite-time) admissible control operator for T(t) if and only if B∗ is an
(infinite-time) admissible observation operator for T

∗(t).
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3. Energy Preserving and Conservative Systems

Definition 3.4. In the following we use the notation of Section 2.6.1. Let B be an
admissible control operator for T(t), then:

(1) (T, B) is exactly controllable in finite time if there exists a time t0 such that
ran Bt0 = X .

(2) (T, B) is approximately controllable if
⋃

t≥0 ran Bt is dense in X .

(3) (T, B) is exactly controllable in infinite time if B is infinite-time admissible
for T(t) and ran B∞ = X . ♣

Observe that the definition above corresponds to the usual notion of being able
to steer any initial state to a desired final state (or close to it). Next we introduce
the corresponding observability concepts via duality.

Definition 3.5. Suppose that C ∈ L(X1, Y ) is an admissible observation oper-
ator for T(t) (Equivalently, C∗ is an admissible control operator for the adjoint
semigroup T

∗). We say that (T, C) is exactly observable (in time t0) (in infinite time)
if (T∗, C∗) is exactly controllable (in time t0) (in infinite time). Similarly, (T, C) is
approximately observable (in time t0) (in infinite time) if (T∗, C∗) is approximately
controllable (in time t0) (in infinite time). ♣

If any of the operators (T, B,C) satisfies any of the properties described above,
then we say that the system has that property. That is why we introduce the
following definition.

Definition 3.6. A linear system is called exponentially (asymptotically, weakly)
stable if T is an exponentially (asymptotically, weakly) stable C0-semigroup. The
system is called infinite time admissible if B is an infinite-time admissible con-
trol operator and C is an infinite-time admissible observation operator for T(t).
Furthermore, it will be called approximately controllable, exactly controllable, or
exactly controllable in infinite time if (T, B) has that property. Similarly for the
observability property. ♣

The following definition of observability is equivalent to the one introduced in
Definition 3.5, see [RTTT05] or [TW03] and the references therein for details on
this equivalence.

Definition 3.7. Consider a system as described in Theorem 2.14. Then the sys-
tem is exactly observable in time tf if there exist ktf

> 0 such that
∫ tf

0

‖y(t)‖2
Y dt ≥ k2

tf
‖x0‖2

L , ∀x0 ∈ D(AL). (3.2)

Note that y(t) = CT(t)x0. The system is exactly observable if it is exactly ob-
servable in some time tf > 0. The system is exactly observable in infinite time if
and only if C is infinite time admissible and the equation (3.2) above holds for
tf = ∞. The system is approximately observable in time tf (or infinite time) if and
only if CT(t)x0 = 0 for t ∈ [0, tf ] implies x0 = 0. ♣
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3.2. Impedance passive system nodes and BCS

3.2. Impedance passive system nodes and BCS

In Section 2.6.2 we have seen how to describe BCS by a system node. We also
showed how to obtain energy preserving systems out of the class of systems (2.1).
In this section we focus on impedance energy preserving systems and we show
some properties of the system node in this case. As mentioned earlier, writing a
boundary control system as a system node allows us to use results available for
systems nodes to analyze BCS.

Definition 3.8 (O.J. Staffans [Sta02]). A system node S on (U,X,U) (note that
U = Y ) is impedance passive if, for all t > 0, the solution (x, y) in Lemma 2.31
satisfies

‖x(t)‖2
X − ‖x0‖2

X ≤ 2

∫ t

0

Re 〈y(τ), u(τ)〉U dτ. (3.3)

It is impedance energy preserving if the above inequality hold in the form of an
equality. Finally, S is impedance conservative if both S and the dual system node
S∗ are impedance energy preserving. ♣

For a definition of the dual (also called the unbounded adjoint) of the system
node see, for instance, [Sta05], [MSW03] or [Sta02]. The following two theorems
characterize impedance energy preserving and impedance conservative system
nodes, respectively. For the proof we refer to [Sta02].

Theorem 3.9 (O.J. Staffans [Sta02]): Let S =
[

A&B
C&D

]
be a system node on

(U,X,U). Then the following conditions are equivalent:

(i) S is impedance energy preserving.

(ii) For all t > 0, the solution (x, y) in Lemma 2.31 satisfies

d

dt
‖x(t)‖2

X = 2Re 〈y(t), u(t)〉U .

(iii) For all [ x0
u0

] ∈ D(S),

Re

〈[
x0

u0

]
,

[
A&B
−C&D

] [
x0

u0

]〉

[X
U ]

= 0.

(vi) The system node
[

A&B
−C&D

]
is skew-symmetric, i.e., D(S) =

D
([

A&B
−C&D

])
⊂ D

([
A&B
−C&D

]∗)
, and

[
A&B
−C&D

]∗ [
x0

u0

]
= −

[
A&B
−C&D

] [
x0

u0

]
,

[
x0

u0

]
∈ D(S).
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Note that if S =
[

A&B
C&D

]
is a system node, then so is

[
A&B
−C&D

]
, and that the do-

mains of these two nodes are the same (it depends only on A&B). In the next
theorem we use the notion of the transfer function of a system node S =

[
A&B
C&D

]
,

which can be defined by (see [MSW03])

G(s) := C&D

[
(s−Ae)

−1B
I

]
, s ∈ ρ(A), (3.4)

which is an L(U, Y )-valued analytic function.

Theorem 3.10 (O.J. Staffans [Sta02]): Let S =
[

A&B
C&D

]
be a system node on

(U,X,U) with transfer function G. Then the following conditions are equiv-
alent:

(i) S is impedance conservative.

(ii) For all t > 0, the solution (x, y) in Lemma 2.31 satisfies

d

dt
‖x(t)‖2

X = 2Re 〈y(t), u(t)〉U .

and the same identity is true for the adjoint system.

(iii) The system node
[

A&B
−C&D

]
is skew-adjoint, i.e., D(S) = D

([
A&B
−C&D

])
=

D
([

A&B
−C&D

]∗)
, and

[
A&B
−C&D

]∗
= −

[
A&B
−C&D

]
.

(iv) A = −A∗, B∗ = C, and G(α) +G(−α)∗ = 0 for some (or equivalently, for
all) α ∈ ρ(A) (in particular, this identity is valid for all α with Reα 6= 0).

Next we study the class of boundary control systems described in Theorem 2.14.
Below we show that if these systems are impedance energy preserving (as de-
scribed in Theorem 2.16), then they are impedance conservative. That is, its dual
boundary control system is also impedance energy preserving.

Theorem 3.11: Given a system node S =
[

A&B
C&D

]
as described in Theorem 2.37,

which is impedance energy preserving, i.e., 1
2

d
dt ‖x(t)‖

2
L = u(t)T y(t) holds (see

Theorem 2.16). Then, it is also impedance conservative. As a consequence,[
A&B
−C&D

]
is skew-adjoint, A = −A∗ = AL, B∗ = C = (C&D)|X1

, and G(α) +
G(−α)∗ = 0 for some (or equivalently, for all) α ∈ ρ(A).
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PROOF: Recall that the state space X is described in (2.33) and here we denote
its inner product by 〈·, ·〉X , i.e., 〈·, ·〉X = 〈·, ·〉L. If we prove that the system node
S1 =

[
A&B
−C&D

]
is skew-adjoint, then the result will follow from Theorem 3.10. So,

we find the adjoint of the system node as follows. Let [ x
u ] ∈ D(S1) = D(S) and

[ v
w ] ∈ [ X

U ]. Then we have that

〈[
A&B
−C&D

] [
x
u

]
,

[
v
w

]〉

[X
U ]

=

〈
A&B

[
x
u

]
, v

〉

X

−
〈
C&D

[
x
u

]
, w

〉

U

.

Using Theorem 2.37 yields

〈[
A&B
−C&D

] [
x
u

]
,

[
v
w

]〉

[X
U ]

= 〈J Lx, v〉X −
〈
W̃

[
f∂,Lx

e∂,Lx

]
, w

〉

U

. (3.5)

First we want to prove that Lv ∈ HN (a, b)n, i.e., v ∈ D(JL) with D(JL) given
in (2.36), see equation (2.80). Choosing x such that Lx ∈ HN (a, b)n has compact
support strictly included in (a, b), yields that u and y are zero and hence, in this
case, we get

〈[
A&B
−C&D

] [
x
0

]
,

[
v
w

]〉

[X
U ]

= 〈J Lx, v〉X =

∫ b

a

(JLx(z))TLv(z) dz.

Since the equality above holds for every Lx ∈ HN (a, b)n with compact support
strictly included in (a, b), we must have (by the definition of the adjoint operator)
that every Lv is N -times differentiable, that is Lv ∈ HN (a, b)n.

Now we can use (2.35) in equation (3.5), which gives

〈[
A&B
−C&D

] [
x
u

]
,

[
v
w

]〉

[X
U ]

= − 〈x,JLv〉X +

〈[
f∂,Lx

e∂,Lx

]
,Σ

[
f∂,Lv

e∂,Lv

]〉

U

−
〈
W̃

[
f∂,Lx

e∂,Lx

]
, w

〉

U

,

and using equation (2.49) yields

〈[
A&B
−C&D

] [
x
u

]
,

[
v
w

]〉

[X
U ]

= −〈x,JLv〉X

+

〈[
f∂,Lx

e∂,Lx

]
, (WT W̃ + W̃TW )

[
f∂,Lv

e∂,Lv

]〉

U

−
〈
W̃

[
f∂,Lx

e∂,Lx

]
, w

〉

U

.

67



3. Energy Preserving and Conservative Systems

Since [ x
u ] ∈ D(S) we obtain from Theorem 2.37 and the equation above

〈[
A&B
−C&D

] [
x
u

]
,

[
v
w

]〉

[X
U ]

= −〈x,JLv〉X +

〈
u, W̃

[
f∂,Lv

e∂,Lv

]〉

U

+

〈
W̃

[
f∂,Lx

e∂,Lx

]
,W

[
f∂,Lv

e∂,Lv

]〉

U

−
〈
W̃

[
f∂,Lx

e∂,Lx

]
, w

〉

U

= 〈x,−JLv〉X +

〈
u, W̃

[
f∂,Lv

e∂,Lv

]〉

U

+

〈
W̃

[
f∂,Lx

e∂,Lx

]
,W

[
f∂,Lv

e∂,Lv

]
− w

〉

U

.

=

〈[
x
u

]
,




−JLv
W̃

[
f∂,Lv

e∂,Lv

]


〉

[X
U ]

+

〈
W̃

[
f∂,Lx

e∂,Lx

]
,W

[
f∂,Lv

e∂,Lv

]
− w

〉

U

.

Since this holds for all [ x
u ] ∈ D(S) we conclude by using the definition of the

adjoint operator, see for instance (2.63), that

(A&B)∗
[
v
w

]
= −JLv, (−C&D)∗

[
v
w

]
= W̃

[
f∂,Lv

e∂,Lv

]
= C&D

[
v
w

]

and that

W̃

[
f∂,Lx

e∂,Lx

]
is orthogonal to

(
W

[
f∂,Lv

e∂,Lv

]
− w

)
. (3.6)

Note that for all [ x
u ] ∈ D(S), see (2.80), W̃

[
f∂,Lx
e∂,Lx

]
maps all R

nN (by the surjec-

tivity of W̃ and of the boundary operator
[

f∂
e∂

]
, see the proof of Theorem 2.14).

Thus, it is easy to see that the condition (3.6) above implies W
[

f∂,Lv
e∂,Lv

]
− w = 0.

Hence the domain of S∗
1 can be represented by

D(S∗
1 ) =

{[
v
w

]
∈
[
X
U

] ∣∣∣∣ Lv ∈ HN (a, b)n and W

[
f∂,Lv

e∂,Lv

]
= w

}
= D(S).

From this (see Theorem 2.37) we clearly obtain the desired result. Note that the
domain of S1 and S are the same, since the domain of S only depends on A and
B, see Definition 2.30.

It is possible to verify that, in the impedance energy preserving case, there is rela-
tion between the graph of the system node (with L = I) and the Dirac structure
described in Theorem 2.7. For instance, by letting W = [I, 0] (which satisfies

WΣWT = 0) and W̃ = [0, I] in Theorem 2.10 we obtain an impedance energy
preserving system (with L = I). In this case, the graph of the system operator S,
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3.2. Impedance passive system nodes and BCS

see Theorem 2.37, is given by

GS =




A&B
C&D
IX 0
0 IU


D(S)

=








f
y
e
u


 ∈ B

∣∣∣∣ e ∈ HN (a, b; Rn), J e = f,

[
y
u

]
=

[
0 I
I 0

]
Rext τ(e)




.

Comparing this with (2.15) we can see that the two subspaces are equivalent.
One just swaps the position of u and y to obtain the subspace (2.15). This re-
sult can be generalized for impedance energy preserving BCS described in The-
orem 2.16 as the following theorem shows.

Theorem 3.12: Consider a Dirac structureDJ as described in Theorem 2.7 and
an impedance energy preserving BCS with L = I as described in Theorem 2.16
with corresponding system node S given in Theorem 2.37. Then, there exist a
matrix U =

[
U1 U2

U3 U4

]
satisfying UT ΣU = Σ such that

MGS = DJ , M =




IX 0 0 0
0 U1 0 U2

0 0 IX 0
0 U3 0 U4




where GS is the graph of the system node. Hence, the Dirac structure can be
seen as the graph of a closed operator (since S is closed). As a consequence,
DJ is a closed subspace of the bond space B.

PROOF: First notice from the proof of Theorem 2.16, see (2.50), that we also have

[
W̃
W

]−T

Σ

[
W̃
W

]−1

= Σ

[
W

W̃

]−T

Σ

[
W

W̃

]−1

Σ = Σ. (3.7)

The results follows easily by letting U =
[fW

W

]−1
=
[

U1 U2

U3 U4

]
and noticing that the

graph of S is

GS =








f
y
e
u


 ∈ B

∣∣∣∣ e ∈ HN (a, b; Rn), J e = f,

[
y
u

]
=

[
W̃
W

]
Rext τ(e)




.
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3.3. Scattering energy preserving systems

In this section we study scattering boundary control systems. Scattering systems
are characterized by the fact that at any time, the sum of the final energy and the
output energy cannot be larger than the sum of the initial energy and the input
energy. Thus, they are well-posed in the sense of Weiss (see Definition 3.1), as
can be seen from the following definition.

Definition 3.13 (O.J. Staffans, [Sta05]). A system node S on the spaces (U,X, Y )
is K-scattering passive if, for all t > 0, the solution (x, y) in Lemma 2.31 satisfies

‖x(t)‖2
X − ‖x0‖2

X ≤ K

∫ t

0

‖u(τ)‖2
U dτ −K

∫ t

0

‖y(τ)‖2
Y dτ. (3.8)

It is K-scattering energy preserving if the above inequality hold in the form of an
equality. Finally, S is scattering conservative if S isK-scattering energy preserving
and the dual system node S∗ is K−1-scattering energy preserving. ♣

For simplicity we only consider 2-scattering systems in this book and we simple
say scattering systems. Recall that in our setting we have U = Y = R

nN , and
X is defined in (2.33). Note also that equation (3.8) is equivalent to the one ap-
pearing in Theorem 2.17. The following theorem describes the dual system of a
scattering boundary control system, and it also shows that this class of systems
is conservative.

Theorem 3.14: Let S =
[

A&B
C&D

]
be a system node as described in Theorem 2.37.

Assume that it is 2-scattering energy preserving, i.e., 1
2

d
dt ‖x(t)‖

2
L = ‖u(t)‖2

U −
‖y(t)‖2

Y holds (see Theorem 2.17). Then, the adjoint system node is described
by

A&B∗
[
x
u

]
= −JLx

D(S∗) =

{[
x
u

]
∈
[
X
U

] ∣∣∣Lx ∈ HN (a, b; Rn), 2W̃

[
f∂,Lx

e∂,Lx

]
= u

}
,

C&D∗
[
x(t)
u(t)

]
= 2W

[
f∂,Lx(t)
e∂,Lx(t)

]
.

Furthermore, the adjoint system is 2−1-scattering energy preserving, i.e., the
system is scattering conservative. In addition, the adjoint boundary control
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3.3. Scattering energy preserving systems

system is described by

∂v

∂t
(t) = − JLv(t), v(0) = v0, t ≥ 0,

ũ(t) = 2W̃

[
f∂,Lv(t)
e∂,Lv(t)

]
,

ỹ(t) = 2W

[
f∂,Lv(t)
e∂,Lv(t)

]
,

with semigroup generator A∗
L, where AL is the semigroup generator of the

original system.

PROOF: Recall that the state space X is described in (2.33) and here we denote
its inner product by 〈·, ·〉X , i.e., 〈·, ·〉X = 〈·, ·〉L. First we find the adjoint of the
system node as it was done in the proof of theorem 3.11. Let [ x

u ] ∈ D(S) and
[ v
w ] ∈ [ X

U ]. Then we have that

〈[
A&B
C&D

] [
x
u

]
,

[
v
w

]〉

[X
U ]

=

〈
A&B

[
x
u

]
, v

〉

X

+

〈
C&D

[
x
u

]
, w

〉

U

.

Using Theorem 2.37 yields

〈[
A&B
C&D

] [
x
u

]
,

[
v
w

]〉

[X
U ]

= 〈J Lx, v〉X +

〈
W̃

[
f∂,Lx

e∂,Lx

]
, w

〉

U

. (3.9)

Again, choosing an Lx ∈ HN (a, b)n with compact support as we did in the proof
of Theorem 3.11, yields Lv ∈ HN (a, b)n. Now, we can use (2.35) in equation (3.9),
which gives

〈[
A&B
C&D

] [
x
u

]
,

[
v
w

]〉

[X
U ]

= − 〈x,JLv〉X +

〈[
f∂,Lx

e∂,Lx

]
,Σ

[
f∂,Lv

e∂,Lv

]〉

U

+

〈
W̃

[
f∂,Lx

e∂,Lx

]
, w

〉

U

,

and using equation (2.52) yields that this is equal to

〈[
A&B
C&D

] [
x
u

]
,

[
v
w

]〉

[X
U ]

= −〈x,JLv〉X

+

〈[
f∂,Lx

e∂,Lx

]
, 2(WTW − W̃T W̃ )

[
f∂,Lv

e∂,Lv

]〉

U

+

〈
W̃

[
f∂,Lx

e∂,Lx

]
, w

〉

U

.
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3. Energy Preserving and Conservative Systems

Since [ x
u ] ∈ D(S) we obtain from Theorem 2.37 and the equation above

〈[
A&B
C&D

] [
x
u

]
,

[
v
w

]〉

[X
U ]

= −〈x,JLv〉X +

〈
u, 2W

[
f∂,Lv

e∂,Lv

]〉

U

+

〈
W̃

[
f∂,Lx

e∂,Lx

]
,−2W̃

[
f∂,Lv

e∂,Lv

]〉

U

+

〈
W̃

[
f∂,Lx

e∂,Lx

]
, w

〉

U

= 〈x,−JLv〉X +

〈
u, 2W

[
f∂,Lv

e∂,Lv

]〉

U

+

〈
W̃

[
f∂,Lx

e∂,Lx

]
,−2W̃

[
f∂,Lv

e∂,Lv

]
+ w

〉

U

.

Again, as it was done at the end of the proof of theorem 3.11 we can conclude
from this, together with the surjectivity of the boundary operator, and the defi-
nition of the adjoint operator that

(A&B)∗
[
v
w

]
= −JLv, (C&D)∗

[
v
w

]
= 2W

[
f∂,Lv

e∂,Lv

]

and that

D(S∗) =

{[
v
w

]
∈
[
X
U

] ∣∣∣∣ Lv ∈ HN (a, b)n and 2W̃

[
f∂,Lv

e∂,Lv

]
= w

}
.

From this (see Theorem 2.37) we clearly obtain the desired result. By the defini-
tion of the system node, the corresponding semigroup generator of S∗, say A∗,
is given, in this case, by A∗ = −JL with domain D(S∗)|u=0, i.e.,

A∗ = −JL, D(A∗) =

{
v ∈ HN (a, b)n |

[
f∂,Lv

e∂,Lv

]
∈ ker W̃

}
.

Since W̃ satisfies (2.51), it follows from Theorem 2.24 that A∗ (and its domain)
equals the adjoint of the semigroup generator (of the original system) AL, i.e.,
A∗ = A∗

L, and hence, it also generates a contraction semigroup. From this we
deduce the expression for the adjoint boundary control system.

The only thing left to prove is that the system is conservative, i.e., that the dual
system is also (2−1)-scattering energy preserving. This follows from

1

2

d

dt
‖v(t)‖2

L =
1

2

d

dt
〈v(t), v(t)〉X = −〈JLv(t), v(t)〉X

= − 1

2

〈[
f∂,Lv(t)
e∂,Lv(t)

]
,Σ

[
f∂,Lv(t)
e∂,Lv(t)

]〉

U

= −
〈[

f∂,Lv(t)
e∂,Lv(t)

]
, (WTW − W̃T W̃ )

[
f∂,Lv(t)
e∂,Lv(t)

]〉

U

= − 1

4
‖ỹ(t)‖2

U +
1

4
‖ũ(t)‖2

U ,

where we used (2.35) and (2.52).
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3.3. Scattering energy preserving systems

Remark 3.15. It is worth remarking that, following Theorem 6.2.13 of [Sta05],
the operator S∗ corresponds to a representation of the dual system of the sys-
tem represented by S and hence of the BCS. For more details on this see [Sta05]
or [SW04]. ♣

Notice that, in this case, the dual BCS corresponds to a system whose input and
output have been interchanged (with respect to the original BCS). A system with
this property is called flow-invertible, see [SW04].

The following theorem links exponential stability, observability and controllabil-
ity of the class of scattering energy preserving systems described in the previous
theorem. This result is related to Proposition 3.2 of [TW03].

Theorem 3.16: Consider a 2-scattering energy preserving BCS as described in
Theorem 2.17. Then the following statements are equivalent:

(a) The system is exactly controllable in time tf , hence for all t > tf .

(b) The system is exactly observable in time tf , hence for all t > tf .

(c) The semigroup T generated by AL satisfies ‖T(tf )‖ < 1 (in particular, the
system is exponentially stable).

PROOF: (c) ⇒ (b): Since the system is scattering energy preserving it satisfies for
all x0 ∈ D(AL) and u(t) = 0

‖x(tf )‖2
X + 2

∫ tf

0

‖y(τ)‖2
Y dτ = ‖x0‖2

X . (3.10)

If (c) holds, then ‖T(tf )‖ = (1 − k2
T ) for some kT > 0, and hence ‖x(tf )‖X =

‖T(tf )x0‖X ≤ (1 − k2
T ) ‖x0‖X . This together with equation (3.10) implies that∫ tf

0
‖y(τ)‖2

Y dτ ≥ k2
T ‖x0‖2

X for some kT > 0. The exact observability now fol-
lows from Definition 3.7.

(b) ⇒ (c): The same procedure done backwards.

(a) ⇐⇒ (c): (c) is equivalent to the fact that ‖T∗‖ < 1. (a) is equivalent to the
dual system being exactly observable (see Remark 3.15) in time tf . Since the dual
system is also scattering energy preserving according to Theorem 3.14, the result
now follows from the equivalence of (b) and (c) proved earlier.

The following theorem is related to Proposition 3.4 of [TW03].
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3. Energy Preserving and Conservative Systems

Theorem 3.17: Consider a scattering energy preserving BCS as described in
Theorem 2.17. Then the following statements are equivalent:

(a) T is asymptotically stable.

(b) The system is exactly observable in infinite time.

(c) The system is approximately observable in infinite time.

(d) The semigroup generator AL does not have eigenvalues on iR.

(e) T is weakly stable (equivalently, T
∗ is weakly stable).

(f) T
∗ is asymptotically stable.

(g) The system is exactly controllable in infinite time.

(h) The system is approximately controllable in infinite time.

(i) A∗
L does not have eigenvalues on iR.

PROOF: (a) ⇒ (b): If T is asymptotically stable, then from (3.10) we obtain

lim
tf→∞

∫ tf

0

‖y(τ)‖2
Y dτ =

1

2
‖x0‖2

X ∀x0 ∈ D(AL).

The result ensues from this.

(b) ⇒ (c): The implication is obvious.

(c) ⇒ (d): Assume that AL has an eigenvalue λ on iR with corresponding eigen-
function x0. Since the system is scattering energy preserving we must have (for
x0 ∈ D(AL) and u = 0), see Remark 2.15,

Re 〈ALx0, x0〉X = −‖y‖2
R

⇒ Reλ ‖x0‖2
X = −‖y‖2

R
.

Thus if Reλ = 0 it follows that y = 0 and the approximate observability gives
x0 = 0, which is a contradiction since x0 is an eigenvector.

(a) ⇒ (e): The implication is obvious.

(d) ⇒ (a): (d) together with the compactness of the resolvent operator (see The-
orem 2.28) as well as the contraction property of the semigroup show that the
conditions on the famous stability theorem of Arendt and Batty [AB88] are satis-
fied. According to this theorem, the system is asymptotically stable.

(e) ⇒ (d): Since T is weakly stable, AL has no eigenvalues on iR.
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3.4. Output energy preserving systems

(e) ⇐⇒ (f) ⇐⇒ (g) ⇐⇒ (h) ⇐⇒ (i): Since the system is conservative, see
Theorem 3.14, the proof is similar to the equivalence of (a)–(e), but with the dual
system (see Remark 3.15) instead of the original system.

3.4. Output energy preserving systems

Another supply rate that appears often in applications is the class of (strictly)
output passive systems. This class appears mainly when static output feedback
is used on an impedance passive system, see Section 5.1.1. We show that this
class of systems is also conservative and well-posed in the sense of Weiss.

Definition 3.18. Let α ∈ L(U) be such that it is positive semi-definite, i.e., α ≥ 0,
and α 6= 0. A system node S on (the real spaces) (U,X,U) is output passive if, for
all t > 0, the solution (x, y) in Lemma 2.31 satisfies

‖x(t)‖2
X − ‖x0‖2

X ≤ 2

∫ t

0

〈u(τ), y(τ)〉U dτ − 2

∫ t

0

〈αy(τ), y(τ)〉U dτ. (3.11)

The system is strictly output passive if α is coercive, i.e., 〈αy, y〉U > ε ‖y‖2
U . It is

(strictly) output energy preserving if the above inequality hold in the form of an
equality. Finally, S is (strictly) output conservative if both S and the dual system
node S∗ are (strictly) output energy preserving. ♣

Now consider a system as described in Theorem 2.14 which is output passive.
Note that equation (3.11), in the energy preserving case, is equivalent to

1

2

d

dt
‖x(t)‖2

L = 〈u(t), y(t)〉U −
∥∥∥α1/2y(t)

∥∥∥
2

U
.

From (2.43)–(2.44) we conclude that

PW,W̃ =

[
0 I
I −2α

]
.

This in turn implies, from (2.43)–(2.44), that

PW,W̃ =

[
0 I
I −2α

]
=

[
W

W̃

]−T

Σ

[
W

W̃

]−1

. (3.12)

From this follows that the matrices W and W̃ in Theorem 2.14 satisfy

WT W̃ + W̃T (W − 2αW̃ ) = Σ. (3.13)

This helps to prove the following result.
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Theorem 3.19: Given a system node S =
[

A&B
C&D

]
as described in Theorem 2.37,

which is (strictly) output energy preserving, i.e., 1
2

d
dt ‖x(t)‖

2
L = 〈u(t), y(t)〉U −

〈αy(t), y(y)〉U holds (see Theorem 2.14). Then, the adjoint system node (see
Remark 3.15) is described by

A&B∗
[
v
w

]
= −JLv

D(S∗) =

{[
v
w

]
∈
[
X
U

] ∣∣∣Lv ∈ HN (a, b; Rn), (2αW̃ −W )

[
f∂,Lv

e∂,Lv

]
= w

}
,

C&D∗
[
v(t)
w(t)

]
= W̃

[
f∂,Lv

e∂,Lv

]
.

Furthermore, the system is also (strictly) output conservative. If, in addition, α
is coercive, i.e., 〈αy, y〉U ≥ ε2 ‖y‖U for ε > 0, then the system is well-posed in
the sense of Weiss.

Remark 3.20. Here, for simplicity, we assume that α is symmetric. In the case
α being not symmetric it is just enough to replace the term 2α by αT + α in all
expressions. ♣

Remark 3.21. Note that the systems described in Theorem 3.11 correspond to the
α = 0 case when compared to the systems described in Theorem 3.19. However,
the adjoint systems found in those theorems differ in a sign since the outputs
also differ in a sign. ♣

PROOF (PROOF OF THEOREM 3.19): First we find the adjoint of the system node
as follows. Let [ x

u ] ∈ D(S) and [ v
w ] ∈ [ X

U ]. Following the same procedure used
in the proof of Theorem 3.11 one can show Lv ∈ HN (a, b)n. Thus, we can substi-
tute (2.35) in equation (3.9), which gives

〈[
A&B
C&D

] [
x
u

]
,

[
v
w

]〉

[X
U ]

= − 〈x,JLv〉X +

〈[
f∂,Lx

e∂,Lx

]
,Σ

[
f∂,Lv

e∂,Lv

]〉

U

+

〈
W̃

[
f∂,Lx

e∂,Lx

]
, w

〉

U

,

and using equation (3.13) yields

= − 〈x,JLv〉X +

〈[
f∂,Lx

e∂,Lx

]
, (WT W̃ + W̃T (W − 2αW̃ ))

[
f∂,Lv

e∂,Lv

]〉

U

+

〈
W̃

[
f∂,Lx

e∂,Lx

]
, w

〉

U

.
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Since [ x
u ] ∈ D(S) we obtain from Theorem 2.37 and the equation above

〈[
A&B
C&D

] [
x
u

]
,

[
v
w

]〉

[X
U ]

= −〈x,JLv〉X +

〈
u, W̃

[
f∂,Lv

e∂,Lv

]〉

U

+

〈
W̃

[
f∂,Lx

e∂,Lx

]
, (W − 2αW̃ )

[
f∂,Lv

e∂,Lv

]〉

U

+

〈
W̃

[
f∂,Lx

e∂,Lx

]
, w

〉

U

= 〈x,−JLv〉X +

〈
u, W̃

[
f∂,Lv

e∂,Lv

]〉

U

+

〈
W̃

[
f∂,Lx

e∂,Lx

]
, (W − 2αW̃ )

[
f∂,Lv

e∂,Lv

]
+ w

〉

U

.

Again, as it was done at the end of the proof of theorem 3.11 we can conclude
from this, together with the surjectivity of the boundary operator, and the defi-
nition of the adjoint operator that

(A&B)∗ = −JL, (C&D)∗
[
v
w

]
= W̃

[
f∂,Lv

e∂,Lv

]

and that

D(S∗) =

{[
v
w

]
∈
[
X
U

] ∣∣∣∣ Lv ∈ HN (a, b)n and (2αW̃ −W )

[
f∂,Lv

e∂,Lv

]
= w

}
.

From this (see Theorem 2.37) we clearly obtain the desired result. Next we prove
that the system is conservative, i.e., that the dual system is also output energy
preserving. This follows from

1

2

d

dt
‖v(t)‖2

L =
1

2

d

dt
〈v(t), v(t)〉L = −〈JLv(t), v(t)〉L

= − 1

2

〈[
f∂,Lv(t)
e∂,Lv(t)

]
,Σ

[
f∂,Lv(t)
e∂,Lv(t)

]〉

U

= − 1

2

〈[
f∂,Lv(t)
e∂,Lv(t)

]
, (WT W̃ + W̃T (W − 2αW̃ ))

[
f∂,Lv(t)
e∂,Lv(t)

]〉

U

=
1

2

〈
w(t) − 2αW̃

[
f∂,Lv(t)
e∂,Lv(t)

]
, W̃

[
f∂,Lv(t)
e∂,Lv(t)

]〉

U

+
1

2
ỹ(t)Tw(t)

= ỹ(t)Tw(t) −
〈
αỹ(t), ˜y(t)

〉
U
,

where we used (2.35) and (3.13). It only remains to prove the well-posedness.

Integrating 1
2

d
dt ‖x(t)‖

2
L = 〈u(t), y(t)〉U −〈αy(t), y(t)〉U from 0 to tf and using the
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fact that α is coercive, i.e., 〈αy, y〉U ≥ ε2 ‖y‖U for ε > 0, we find that

‖x(tf )‖2
L −‖x(0)‖2

L = 2

∫ tf

0

uT (τ)y(t) dτ − 2

∫ tf

0

y(τ)Tαy(τ)dτ

≤ 2

∫ tf

0

uT (τ)y(t) dτ − 2ε2
∫ tf

0

‖y(τ)‖2
U dτ

≤ 1

ε2

∫ tf

0

‖u(τ)‖2
U dτ + ε2

∫ tf

0

‖y(τ)‖2
U dτ − 2ε2

∫ tf

0

‖y(τ)‖2
U dτ

=
1

ε2

∫ tf

0

‖u(τ)‖2
U dτ − ε2

∫ tf

0

‖y(τ)‖2
U dτ,

where we used 2aT b ≤ (aTa)/ε2 + ε2(bT b) for any a, b ∈ R
n. From the inequality

above, the result follows, see Definition 3.1.

Following this, it is easy to see that similar results to those of Theorems 3.16
and 3.17 also hold for this class of systems. That is, we can link exponential sta-
bility, observability and controllability of the class of output energy preserving
systems described in the previous theorem. This is shown in the following theo-
rems, whose proof follows the same ideas of the proof of Theorems 3.16 and 3.17.

Theorem 3.22: Consider a BCS as described in Theorem 2.14. Assume
it is strictly output energy preserving, i.e., 1

2
d
dt ‖x(t)‖

2
L = 〈u(t), y(t)〉U −

〈αy(t), y(t)〉U holds. Furthermore, assume that α coercive. Then the follow-
ing statements are equivalent:

(a) The system is exactly controllable in time tf , hence for all t > tf .

(b) The system is exactly observable in time tf , hence for all t > tf .

(c) The semigroup T generated by AL satisfies ‖T(tf )‖ < 1 (in particular, the
system is exponentially stable).

PROOF: The proof follows the same ideas of the proof of Theorem 3.16 with
minor modifications.

Remark 3.23. In the case of the input space U being finite-dimensional, the con-
dition on α being coercive is equivalent to the system being strictly output energy
preserving. This follows since the condition α > 0 in a finite-dimensional space
necessarily implies that the inverse is bounded. ♣
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3.4. Output energy preserving systems

Theorem 3.24: Consider a BCS as described in Theorem 2.14. Assume it is
output energy preserving, i.e., 1

2
d
dt ‖x(t)‖

2
L = 〈u(t), y(t)〉U −〈αy(t), y(t)〉U holds

with α positive semi-definite, i.e., α ≥ 0. If the semigroup T generated by AL
satisfies ‖T(tf )‖ < 1 (in particular, the system is exponentially stable), then

• the system is exactly controllable in time tf and

• the system is exactly observable in time tf .

PROOF: Since the system is output energy preserving it satisfies for all x0 ∈
D(AL) and u(t) = 0

‖x(tf )‖2
X + 2

∫ tf

0

〈α y(τ), y(τ)〉Y dτ = ‖x0‖2
X (3.14)

⇒ ‖x0‖2
X ≤ ‖x(tf )‖2

X + k1

∫ tf

0

‖y(τ)‖2
Y dτ

for a k1 > 0. By assumption we have ‖T(tf )‖ = (1 − k2
T ) for some kT > 0, and

hence ‖x(tf )‖X = ‖T(tf )x0‖X ≤ (1 − k2
T ) ‖x0‖X . This together with (3.14) and

the boundedness of α implies that
∫ tf

0
‖y(τ)‖2

Y dτ ≥ k2 ‖x0‖2
X for some k2 > 0.

The exact observability now follows from Definition 3.7.

The assumption on T (t) is equivalent to ‖T
∗‖ < 1. Recall that exact controllabil-

ity is equivalent to the dual system being exactly observable in time tf . Accord-
ing to Theorem 3.19 the dual system (see Remark 3.15) is also output energy pre-
serving, thus, the result now follows from the exact observability proved above.

Theorem 3.25: Consider a BCS as described in Theorem 2.14. Assume
it is strictly output energy preserving, i.e., 1

2
d
dt ‖x(t)‖

2
L = 〈u(t), y(t)〉U −

〈αy(t), y(t)〉U holds with α coercive. Then the following statements are equiv-
alent:

(1) T is asymptotically stable.

(2) The system is exactly observable in infinite time.

(3) The system is approximately observable in infinite time.

(4) The semigroup generator AL does not have eigenvalues on iR.

(5) T is weakly stable (equivalently, T
∗ is weakly stable).

(6) T
∗ is asymptotically stable.
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(7) The system is exactly controllable in infinite time.

(8) The system is approximately controllable in infinite time.

(9) A∗
L does not have eigenvalues on iR.

PROOF: The proof follows the same ideas of the proof of Theorem 3.17 with
minor modifications (noticing that the conservativity of the system follows from
Theorem 3.19).

Theorem 3.26: Consider a BCS as described in Theorem 2.14. Assume it is out-
put energy preserving, i.e., 1

2
d
dt ‖x(t)‖

2
L = 〈u(t), y(t)〉U − 〈αy(t), y(t)〉U with α

positive semi-definite. If the semigroup generator AL does not have eigenval-
ues on iR then

• T is asymptotically stable,

• the system is exactly observable in infinite time,

• the system is approximately observable in infinite time,

• T is weakly stable (equivalently, T
∗ is weakly stable),

• A∗
L does not have eigenvalues on iR,

• T
∗ is asymptotically stable,

• the system is exactly controllable in infinite time, and

• the system is approximately controllable in infinite time.

PROOF: The assumption on AL together with the compactness of the resolvent
operator (see Theorem 2.28) as well as the contraction property of the semi-
group show that the conditions on the famous stability theorem of Arendt and
Batty [AB88] are satisfied. According to this theorem, the system is asymptoti-
cally stable (and hence weakly stable).

Since the system is asymptotically stable it follows from (3.14) and the bounded-
ness of α that

lim
tf→∞

∫ tf

0

‖y(τ)‖2
Y dτ ≥ 1

k1
‖x0‖2

X ∀x0 ∈ D(AL).

The observability ensues from this.
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3.4. Output energy preserving systems

Since T is weakly stable we also have that T
∗ is weakly stable. This in turn im-

plies that A∗
L does not have eigenvalues on iR. Since the system is conservative,

see Theorem 3.19, the rest of the proof follows the same ideas as above, but with
the dual system (see Remark 3.15) instead of the original system.

Example 3.27 As an example of an output energy preserving we consider the
Timoshenko beam studied in Example 2.19. Recall that the model is described
by (2.53), the energy is given by (2.54) and the ports by (2.55). In this case we
impose the following boundary conditions

1

ρ(a)
x2(a, t) = 0,

1

Iρ(a)
x4(a, t) = 0, t ≥ 0,

K(b)x1(b, t) = −α1
1

ρ(b)
x2(b, t), EI(b)x3(b, t) = −α2

1

Iρ(b)
x4(b, t), (3.15)

where α1 and α2 are given positive gain feedback constants. These conditions
correspond to a beam clamped at the left side, i.e., at z = a, and controlled at
z = b by force and moment feedback. The corresponding matrix W that gives
the boundary conditions above is

W =
1√
2




−1 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 1
α1 1 0 0 1 α1 0 0
0 0 α2 1 0 0 1 α2


 , (3.16)

which satisfies

WΣWT = 2




0 0 0 0
0 0 0 0
0 0 α1 0
0 0 0 α2


 .

As output we choose

y =




−K(a)x1(a)
−(EI)(a)x3(a)

1
ρ(b) x2(b, t)
1

Iρ(b) x4(b, t)


 , with W̃ =

1√
2




0 1 0 0 −1 0 0 0
0 0 0 1 0 0 −1 0
1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1


 .

Then, from equation (2.30) we obtain again that

P−1

W,W̃
=

[
2α I
I 0

]
, PW,W̃ =

[
0 I
I −2α

]
, α =




0 0 0 0
0 0 0 0
0 0 α1 0
0 0 0 α2


 ,

which, in turn gives from (2.29) that

d

dt
E(t) =

1

2

d

dt
‖x(t)‖2

L = 〈u(t), y(t)〉U − 〈αy(t), y(t)〉U .
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3. Energy Preserving and Conservative Systems

Observe that this system corresponds to the closed-loop system of an impedance
energy preserving system with a static controller, see Figure 3.1. Indeed if we
let α = 0 in the equation above, we obtain an impedance energy preserving

system with input u =
(

1
ρ(a) x2(a, t),

1
Iρ(a) x4(a, t), K(b)x1(b, t), EI(b)x3(b, t)

)T

and output y =
(
−K(a)x1(a), −(EI)(a)x3(a),

1
ρ(b) x2(b, t) ,

1
Iρ(b) x4(b, t)

)T
.

BEAM

--

u1

u2
u3

u4

y1
y2
y3

y4

Boundary

α

Figure 3.1.: Feedback loop.

It is easy to prove that the system with the boundary conditions (3.15) (the
closed-loop system) is asymptotically stable. For instance, this can be done
by proving that the semigroup generator AL does not have eigenvalues in the
imaginary axis, see Theorem 3.26. In fact, assume that λ is an eigenvalue of AL
with corresponding eigenfunction x̃. Then from the equation above we obtain
(see Remark 2.15)

〈ALx̃, x̃〉L = Reλ 〈x̃, x̃〉L = −〈αy(t), y(t)〉U .
If Reλ = 0 then 〈αy(t), y(t)〉U must be zero, which in turn implies that

1
ρ(b) x̃2(b, t) and 1

Iρ(b) x̃4(b, t) are zero since α1 and α2 are nonzero constants.

Using this in the boundary conditions (3.15) gives that K(b) x̃1(b, t) and
EI(b) x̃3(b, t) are zero too. Thus, x̃ is the solution of a PDE with all bound-
ary variables at z = b set to zero for all t ≥ 0. Therefore, we can conclude from
Holmgren’s theorem, see [Joh49], that x̃ = 0, which is a contradiction since x̃
was assumed to be an eigenvector. Hence AL does not have eigenvalues on the
imaginary axis. Since α is clearly positive semi-definite (not coercive) we can
apply Theorem 3.26. It is also possible to prove that this system is exponentially
stable, but the proof is more involved, see Example 4.30 for details. ∗
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Chapter 4

Riesz Basis Property: Case N = 1

In this chapter we investigate the Riesz basis property of the class of boundary
control systems described by (2.1)–(2.3) with N = 1. This class appears often
in the literature and covers many interesting applications such as the control
of vibrations in flexible structures and traveling waves in acoustics. The prop-
erty of the generalized eigenvectors of the system forming a Riesz basis is one
of the most important features in the analysis of distributed parameter systems
both from a theoretical and practical point of view. The validity of this prop-
erty results not only in the fact that the stability of the system is determined by
the spectrum of the semigroup generator, which is referred to as the spectrum-
determined growth condition, but also is important since the dynamic behavior
of the system can be described in the form of eigenfunction expansions of non-
harmonic Fourier series. Unfortunately, this property is not easy to verify, even
for the most studied systems such as Timoshenko and Euler-Bernoulli beams
under certain linear boundary feedback control. Many of the methods used to
verify the Riesz basis property rely heavily on the exact expression of the char-
acteristic equation and the eigenfunctions, which make them not useful when
dealing with variable coefficients. Also many of the methods used to check this
conditions can only be applied in a case-by-case basis. On the other hand, if
one is only interested in exponential stability, then one can avoid the Riesz basis
approach by using the multiplier technique, see [Kom95], but this is also case-
dependent due to the search of the suitable multiplier and in some cases it is not
obvious how to select such multiplier. So it appears that not many results have
been published that handle the Riesz basis property for a class of systems.

The main aim of this chapter is to deal with a class of systems rather than tack-
ling a particular problem. To do so, we take advantage of the results presented
in Chapter 2. Once we have posed the problem as described in that chapter
we use the results presented in [MM03] and [Tre00b] to prove the Riesz basis
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4. Riesz Basis Property: Case N = 1

property. It is well known that the study of systems with variable coefficient is
difficult because explicit solution formula is hard to find. Instead, our approach
only requires asymptotic (not necessarily exact) expressions of the characteristic
equations, eigenvalues and eigenfunctions. These asymptotic expression emerge
directly from the method described in [Tre00b].

Recently, Xu and Yung, [XY05], introduced a simple criterion to establish the
Reisz basis property, which has already been used in [XY04], [Xu05]. The verifi-
cation of this property in [XY05] is based on the assumption that the spectrum of
the main operator (i.e., the semigroup generator) lies inside some vertical strip,
its eigenvalues are separated, and the algebraic multiplicity of the eigenvalues is
bounded uniformly. Under these conditions the eigenfunctions of the semigroup
operator form a Riesz basis on the state space provided that the eigenfunctions
are complete on that space. The main result of this chapter is that it proves the
Riesz basis property for a class of systems only based on the assumption that the
eigenvalues are separated. That is, we show for this class of systems, that the
spectrum of the system lies inside some vertical strip, the algebraic multiplicity
of the eigenvalues are uniformly bounded, and, mainly, that the eigenfunctions
are complete in the state space. We remark that this class of systems contains the
well-know Timoshenko beam and the wave equation, as well as models of heat
exchangers ([KS98]), swelling porous elastic soils with fluid saturation ([WG06]),
linear bioprocess model with recycle loop ([SK05]) among others. For more de-
tails on Riesz basis see [You80] or [CZ95b].

Recall that we denote by Mn,m(G) the set of all n×m matrices with entries in G.
If n = m we write Mn(G). For m ∈ N and p ∈ R with 1 ≤ p ≤ ∞, we define the
Sobolev space

Wm,p(a, b) =

{
v ∈ Lp(a, b) |

∂α

∂zα
v ∈ Lp(a, b), ∀α ≤ m, α ∈ N

}
, (4.1)

which is a Banach space for the norm

‖u‖m,p,(a,b) =

(
m∑

α=0

∫ b

a

∣∣∣∣
∂α

∂zα
u(x)

∣∣∣∣
p

dx

)1/p

, p <∞ (4.2)

or

‖u‖m,∞,(a,b) = sup
|α|≤m

(
sup

x∈(a,b)

ess

∣∣∣∣
∂α

∂zα
u(x)

∣∣∣∣

)
, p = ∞.

Here, the derivative is in the distributional sense. If p = 2 we write Hm(a, b)
instead of Wm,2(a, b). The standard norm and inner product on L2(a, b) (or
L2(a, b)

n) will be denoted by ‖·‖ and 〈·, ·〉 respectively.

We start by briefly recalling the fundamental matrix of a differential equation and
its properties which will be used in the sequel. Then we study the asymptotic
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4.1. The fundamental matrix

properties of the BCS. Finally, we proceed to prove the main results. But first, let
us recall the definition of a Riesz basis.

A sequence {yi} in a Hilbert space H is called a basis for H if to each element
x ∈ H corresponds a unique sequence of scalars ci, i = 1, 2, . . . ,K such that the
series

x =

K∑

i=1

ci yi (4.3)

is convergent with respect to the norm of H . {yi} is called a Riesz basis for H if

i) span {yi} = H , and

ii) There exist positive constants m and M such that for an arbitrary positive
integer K and arbitrary scalars ci, i = 1, 2, . . . ,K one has

m

K∑

i=1

|ci|2 ≤
∥∥∥∥∥

K∑

i=1

ciyi

∥∥∥∥∥

2

H

≤M

K∑

i=1

|ci|2.

A basis {yi} of H is called a Riesz basis with parentheses, see [Shk86], if (4.3) con-
verges in H after putting some of its terms in parentheses the arrangement of
which does not depend on x. Refer to [You80] for more details on Riesz bases.

4.1. The fundamental matrix

Definition 4.1. Suppose P (z) ∈Mn(Lp(a, b)) and let

v′(z) − P (z)v(z) = 0 z ∈ [a, b]. (4.4)

Then a matrix M(z) ∈Mn(W 1,p(a, b)) is called a fundamental matrix for the equa-
tion above if for each independent solution of (4.4), say v, there exists a c ∈ R

n

such that v(z) = M(z)c. Equivalently, M(z) is invertible andM ′(z) = P (z)M(z).
If in addition, M(z) satisfies M(a) = I , then it is unique and is called the transi-
tion matrix. ♣

Note that M(z)C is also a fundamental matrix if C ∈ Mn(R) is any nonsingular
matrix, sinceM(z)C is also nonsingular and its columns are linear combinations
of M(z).

It is well-known that if P (z) satisfies (the Lappo-Danilevskii condition)

P (z)

∫ z

a

P (τ) dτ =

∫ z

a

P (τ) dτ P (z),

then M(z) = exp
(∫ z

a
P (τ) dτ

)
. In particular, if P (z) = P is a constant matrix,

then M(z) = eP (z−a).
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4. Riesz Basis Property: Case N = 1

The transition matrix makes it possible to write every solution of the inhomoge-
neous system

v′(z) = P (z)v(z) + w(z) z ∈ [a, b]

in the form of Cauchy’s formula

v(z) = M(z)v(a) +

∫ z

a

M(z, τ)w(τ) dτ z ∈ [a, b], (4.5)

where
M(z, τ) = M(z)M−1(τ) (4.6)

is called the Cauchy matrix of (4.4). The Cauchy matrix is jointly continuous in its
arguments on [a, b] × [a, b] and for arbitrary z, τ ∈ [a, b] it has the properties

M(z, τ) = M(z, a)M−1(τ, a), (4.7a)

M(z, τ) = M(z, s)M(s, τ), (4.7b)

M(z, τ) = M−1(τ, z), (4.7c)

M(z, z) = I, (4.7d)

if H(z, τ) is the Cauchy matrix of the adjoint system v′(z) = PT (z)v(z),

then H(z, τ) = MT (z, τ). (4.7e)

4.2. Case N = 1 with variable coefficients

Here we consider systems of the form (see Theorem 2.14)

∂x
∂t (t, z) = P1

∂Lx(t,z)
∂z + P0Lx(t, z), z ∈ [a, b], x(0) = x0,

u(t) = W

[
f∂,Lx(t)
e∂,Lx(t)

]
,

y(t) = C

[
f∂,Lx(t)
e∂,Lx(t)

]
,

(4.8)

where L is a coercive operator on L2(a, b)
n, i.e., L = L∗ and 〈x,Lx〉 ≥ δ ‖x‖ > 0;

P0 = −PT
0 ∈Mn(R), P1 = PT

1 ∈Mn(R), and

[
f∂

e∂

]
=

√
2

2

[
P1 −P1

I I

] [
(Lx)(b)
(Lx)(a)

]
, (4.9)

see Definition 2.5. Note that L can depend on z, i.e., the PDE above can have
variable coefficients. In this chapter we assume L ∈ Mn(W 2,∞(a, b)) and we
consider L as a multiplication operator on L2(a, b)

n. The state space is given
by (2.33), i.e.,

X = L2(a, b)
n with the inner product 〈·, ·〉L = 〈x,Lx〉 .
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4.2. Case N = 1 with variable coefficients

If W =
[
W1, W2

]
satisfies WΣWT ≥ 0, then we have that the operator AL

defined by

ALx = P0Lx+ P1
∂Lx
∂z

, (4.10a)

with domain

D(AL) =

{
Lx ∈ H1(a, b; Rn) |

[
f∂,Lx

e∂,Lx

]
∈ kerW

}
,

=
{
Lx ∈ H1(a, b; Rn) | Wb(Lx)(b) +Wa(Lx)(a) = 0

}
(4.10b)

generates a contraction semigroup, where

Wb := (W1P1 +W2), Wa := (−W1P1 +W2). (4.10c)

First we study the eigenvalues of AL. Since AL generates a contraction semi-
group we know from the Lümer-Phillips theorem that Re 〈ALx, x〉L ≤ 0 for all
x ∈ D(AL). Let x1 be any eigenvector of AL with corresponding eigenvalue λ.
Then we have that

0 ≥ Re 〈ALx1, x1〉L = Re 〈ALx1,Lx1〉 = Re 〈λx1,Lx1〉 = Reλ 〈x1,Lx1〉 .

This implies (by the coercivity of L) that all eigenvalues of AL satisfy Reλ ≤ 0.
Moreover, we have that this eigenvector x1 is the solution of

P0Lx1(z) + P1
dLx1

dz
(z) = λx1(z) ⇐⇒ dLx1

dz
(z) = P−1

1 (λL−1(z) − P0)Lx1(z).

(4.11)

The general solution of the equation above is given by

Lx1(z) = M(z, λ) c, M(a, λ) = I (4.12)

where M(z, λ) is a transition matrix of (4.11), and c is a constant vector deter-
mined by the boundary conditions. If L is a constant matrix, then we can write

M(z, λ) = eP−1
1 (λL−1−P0)(z−a). Note the dependance on the eigenvalue parame-

ter λ of this transition matrix. Do not confuse with the Cauchy matrix.

Using the boundary conditions on D(AL), see (4.10b), we conclude that the so-
lution of (4.11) has to satisfy

Wb(Lx1)(b) +Wa(Lx1)(a) = 0. (4.13)

Using (4.12) in the above equation gives

(WbM(b, λ) +Wa) c = 0. (4.14)
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4. Riesz Basis Property: Case N = 1

We know that λ is an eigenvalue of AL if and only if the matrix above is singular.
We showed above that the eigenvalues of AL satisfy Reλ ≤ 0, which shows that
the matrix above is nonsingular if Reλ > 0, otherwise AL would have eigenval-
ues with Reλ > 0. In resume we have the following result.

Theorem 4.2: Consider the operator AL described in (4.10) with L a multipli-
cation operator and W =

[
W1 W2

]
satisfying WΣWT ≥ 0. Denote the

transition matrix of (4.11) by M(z, λ), see (4.12) and by M(z, s, λ) the respec-
tive Cauchy matrix. Then,

(i) The eigenvalues of AL satisfy Reλ ≤ 0, and are the λ’s for which the
matrix

H0(λ) = WbM(b, λ) +Wa (4.15)

is singular. If Reλ > 0, the matrix above is nonsingular.

(ii) The corresponding eigenfunction is given by

xi(z) = L−1(z)M(z, λi)c, (4.16)

where c is a nonzero solution of H0(λi)c = 0.

(iii) The resolvent (λ−AL)−1 can be represented as

(
(λ−AL)−1y

)
(z) = L−1

(
M(z, λ) c−

∫ z

a

M(z, τ, λ)P−1
1 y(τ) dτ

)
,

(4.17)
where c is

c = H−1
0 (λ)Wb

∫ b

a

M(b, τ, λ)P−1
1 y(τ) dτ. (4.18)

(iv) Furthermore, if λ > 0, the resolvent operator (λ − AL)−1 is a compact
operator, and consequently the spectrum of AL, σ(AL), consists only of
isolated eigenvalues with finite multiplicity. That is, σ(AL) = σp(AL) =
{λ | detH0(λ) = 0}.

PROOF: Points (i) and (ii) were proved above. Next we study the resolvent of
AL. First we study the range of (λ − AL) : D(AL) → X for λ > 0. To see this,
consider (λ−AL)x = y, which is equivalent to solve

y = (λ−AL)x ⇐⇒ y = λx− P0Lx− P1
dLx
dz

⇐⇒ dLx
dz

(z) = P−1
1 (λL−1 − P0)Lx(z) − P−1

1 y(z) (4.19)
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4.2. Case N = 1 with variable coefficients

for x ∈ D(AL). The general solution of (4.19) is given by, see (4.5),

Lx(z) = M(z, λ) c−
∫ z

a

M(z, τ, λ)P−1
1 y(τ) dτ, (4.20)

where c is a constant vector determined by the boundary conditions. Since x ∈
D(AL) the boundary conditions (see (4.10b)) are described by (4.13). Using (4.20)
in (4.13) yields

Wb

[
M(b, λ) c−

∫ b

a

M(b, τ, λ)P−1
1 y(τ) dτ

]
+Wa c = 0

⇐⇒ H0(λ) c = Wb

∫ b

a

M(b, τ, λ)P−1
1 y(τ) dτ.

We already showed that when Reλ > 0 the matrix H0(λ) is nonsingular. In that
case, c can be defined uniquely, which implies that (4.19) has a unique solution
in D(AL). That the resolvent is compact follows from Theorem 2.28.

Next, we study the asymptotic properties of the fundamental matrix above. We
use the approach used in [Tre00b] and [MM86]. To do this we would like to
diagonalize the matrix (L(z)P1)

−1. By using the coercivity of L we have that
L = L1/2L1/2 where L1/2 is also coercive. Using this we get, for any eigenvector
v(z) of (L(z)P1)

−1 with corresponding eigenvalue λ(z), that

λ 〈v, u〉 =
〈
P−1

1 L−1v, u
〉

=
〈
P−1

1 L−1/2L−1/2v,L−1/2L1/2u
〉

=
〈
L−1/2P−1

1 L−1/2(L−1/2v),L1/2u
〉
, ∀u.

But we also have that 〈v, u〉 =
〈
L−1/2v,L1/2u

〉
. Then we conclude (with ũ =

L1/2u)

λ
〈
L−1/2v, ũ

〉
=
〈
L−1/2P−1

1 L−1/2(L−1/2v), ũ
〉
, ∀ ũ.

Hence λ (L−1/2v) = L−1/2P−1
1 L−1/2(L−1/2v), which implies that λ is also an

eigenvalue of a symmetric operator, and hence it is semisimple and a real func-
tion. Next we make the following assumption.

ASSUMPTION 4.3: Assume L ∈ Mn(W 2,∞(a, b)), P1 is nonsingular, and the
eigenvalues of P−1

1 L−1 ∈Mn(W 2,∞(a, b)) satisfy

|λµ − λν |−1 ∈ L∞(a, b).

This means that λµ(z) cannot coincide with some other λν(x) at any point x ∈
[a, b]. ♥
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4. Riesz Basis Property: Case N = 1

The assumption above implies that the eigenvalues and eigenvectors of P−1
1 L−1

(as a function of z) are continuously differentiable, see [Kat95]. This implies that
P−1

1 L−1 can be diagonlized. In other words, there exists an R ∈Mn(W 2,∞(a, b))
with R−1 ∈ Mn(W 2,∞(a, b)), such that R−1(LP1)

−1R = A1 where A1(z) ∈
Mn(W 2,∞(a, b)) is a diagonal matrix with the eigenvalues of P−1

1 L−1 as diag-
onal elements, see [Kat95, Chapter II] or [Iva89].

Let R(z) be a matrix that diagonalizes (L(z)P1)
−1, i.e., R−1(LP1)

−1R = A1

where A1(z) = diag{r1(z), . . . , rn(z)}. Consider the eigenvalue problem (4.11)
and let

φ(z) = R−1Lx1(z), A1 = R−1(LP1)
−1R = diag{r1, . . . , rn},

A0 = −R−1(P−1
1 P0R+R′),

(4.21)

where R′ = ∂
∂zR. Then, equation (4.11) becomes

dφ

dz
(z) =

(
λA1(z) +A0(z)

)
φ(z), z ∈ [a, b]. (4.22)

4.3. First order eigenvalue problem

In this section we look at the eigenvalue problem (4.21)–(4.22), i.e.,

dφ

dz
(z) = (λA1(z) +A0(z))φ(z), z ∈ (a, b) (4.23)

Wb(Rφ)(b) +Wa(Rφ)(a) = 0,

where Wb and Wa are given by (4.10c). In this section we assume that A1, A0 ∈
Mn(W 0,∞(a, b)) = Mn(L∞(a, b)), and A1 has the diagonal form

A1 =




r0In0
0 . . . 0

0 r1In1

...
...

. . .

0 . . . rlInl



, |rν − rµ|−1 ∈ L∞(a, b), ν 6= µ,

(4.24a)
rν(z) ∈ R for all z ∈ [a, b]. The condition above comes from Assumption 4.3,
from which we deduce that there are φνµ ∈ {0, π} (since the eigenvalues of LP1

are real) such that

rν(z) − rµ(z) = |rν(z) − rµ(z)|eiφνµ , for ν, µ ∈ {0, . . . , l}. (4.24b)
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4.3. First order eigenvalue problem

We set

Rν(z) :=

∫ z

a

rν(ξ) dξ, ν = 0, . . . , l; z ∈ [a, b],

Eν(z, λ) := eλRν(z)Inν
, ν = 0, . . . , l; z ∈ [a, b], (4.25)

E(z, λ) =




E0(z, λ) 0 . . . 0

0 E1(z, λ)
...

...
. . .

0 . . . El(z, λ)



.

Let U be an unbounded subset of C, f be a function on U with values in Mk,n(C)
and g be a complex-valued function on U . We write

f(λ) = O(g(λ))

if there is a C > 0 such that |f(λ)| ≤ C|g(λ)| for λ ∈ U . The notation

f(λ) = o(g(λ))

means that |f(λ)| |g(λ)|−1 → 0 as |λ| → ∞ in U . Also, let f(·, λ) ∈Mk,n(Lp(a, b))
for λ ∈ U and, as above, g be a complex-valued function on U . We write

f(·, λ) = {O(g(λ))}p or f(·, λ) = O(g(λ)) in Mk,n(Lp(a, b))

if there is a C > 0 such that ‖f(·, λ)‖p ≤ C|g(λ)| for λ ∈ U , and

f(·, λ) = {o(g(λ))}p or f(·, λ) = o(g(λ)) in Mk,n(Lp(a, b))

if ‖f(·, λ)‖p |g(λ)|−1 → 0 as |λ| → ∞ in U .

For the matrices A0, A1 and Ψ0 (defined below) we form the block matrices

Aj := (Aj,νµ)l
ν,µ=0, and Ψ0 := (Ψ0,νµ)l

ν,µ=0

according to the block structure of A1. The following theorem can be found in
either [MM03, §2.8], [MM86] or [Tre00b].

Theorem 4.4: Let 0 6= λ ∈ C. Consider the eigenvalue problem (4.23)–(4.25).

Then, there exists a fundamental matrix Ψ̂(z, λ) of (4.23), which satisfies

Ψ̂′(z) = (λA1 +A0

)
Ψ̂(z) (4.26)

such that for large enough |λ|,

Ψ̂(z, λ) =
(
Ψ0(z) + Θ̂(z, λ)

)
E(z, λ), (4.27)
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4. Riesz Basis Property: Case N = 1

where Ψ0(z) ∈Mn(W 1,∞(a, b)) is determined by

Ψ0(z)A1 = A1Ψ0(z), Ψ0(a) = I, (4.28)

Ψ′
0,νν −A0,ννΨ0,νν = 0, ν = 0, . . . , l

and Θ̂(z, λ) ∈Mn(W 1,∞(a, b)) have, for large λ, the asymptotic estimates

Θ̂(z, λ) = {o(1)}∞,
Θ̂(z, λ) = {O(τ∞(λ))}∞, (4.29)

1

λ
Θ̂′(z, λ) = {o(1)}∞,

1

λ
Θ̂′(z, λ) = {O(τ∞(λ))}∞,

where ′ denotes differentiation with respect to z, and

τ∞(λ) :=

{
maxl

ν,µ=0
v 6=µ

(1 + |Re (λ)|)−1 if l > 0,

|λ|−1 if l = 0.

PROOF: The proof can be found in [MM03, §2.8] or [MM86, Chapter 3]. The
existence of Ψi(z) ∈Mn(W 1

∞(a, b)) follows, since rν 6= rµ, from

Ψ0(z)A1 = A1Ψ0(z)

⇒




r0Ψ0,00 r1Ψ0,01 . . . rlΨ0,0l

r0Ψ0,10 r1Ψ0,11

...
...

. . .

r0Ψ0,l0 r1Ψ0,l1 . . . rlΨ0,ll




=




r0Ψ0,00 r0Ψ0,01 . . . r0Ψ0,0l

r1Ψ0,10 r1Ψ0,11

...
...

. . .

rlΨ0,l0 rlΨ0,l1 . . . rlΨ0,ll




⇒ Ψ0(z) =




Ψ0,00 0 . . . 0

0 Ψ0,11

...
...

. . .

0 0 . . . Ψ0,ll



, Ψ0(a) =




In0
0 . . . 0

0 In1

...
...

. . .

0 . . . Inl



.

By letting Ψ0,νν ∈ Mn

(
W 1

∞(a, b)
)

be a fundamental matrix of y′ − A0,ννy = 0
with Ψ0,νν(a) = Inν

, i.e., Ψ′
0,νν = A0,ννΨ0,νν and, for ν 6= µ, setting Ψ0,νµ = 0 we

obtain that Ψ0 satisfies (4.28).

Remark 4.5. From the estimates (4.29) and since Ψ0(a) = I it is easy to see that

the above fundamental matrix Ψ̂(z, λ) approximates its corresponding transition
matrix for λ large enough. ♣
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4.3. First order eigenvalue problem

Corollary 4.6: Let the conditions of Theorem 4.4 hold. If the block-diagonal ele-
ments of A0 are zero, i.e., A0,νν = 0 v = 0, 1, . . . , l, then we have that Ψ0(z) = I
and

lim
λ→∞

Ψ̂(z, λ) = lim
λ→∞

(
I + Θ̂(z, λ)

)
E(z, λ) = E(z, λ).

Thus, under these conditions, the fundamental solution of the system dφ
dz =(

λA1 + A0

)
φ converges to the fundamental solution of the system dφ

dz = λA1φ
when |λ| → ∞. ♠
PROOF: That Ψ0(z) = I follows easily since Ψ0(z) is a block-diagonal matrix
where the block diagonal elements are the fundamental solution of Ψ′

0,νν =

A0,ννΨ0,νν . The other part of the proof follows from Θ̂(z, λ) = {o(1)}∞ and
1
λ Θ̂′(z, λ) = {o(1)}∞.

Remark 4.7. Note that the condition on the corollary above is on the block diag-
onal elements of A0 and not on P0. ♣

Corollary 4.6 could be useful when trying to prove the exponential stability of
some systems. By looking at the expression for A0, see (4.21), one may wonder
whether it is possible to select R in such a way that the diagonal elements are
zero. The following theorem gives an answer to this question.

Theorem 4.8: Consider the problem (4.21)–(4.22). LetR0 contain the eigenvec-
tors of (LP1)

−1 and Υ be a diagonal matrix whose diagonal elements, denoted
by υk, satisfy

υk ϑk − υ′k = 0 k = 1, . . . , n,

where a prime denotes differentiation with respect to z and ϑk is the k-th di-
agonal element of −R−1

0 (P−1
1 P0R0 + R′

0). Then R = R0 Υ satisfy (4.21) and,
moreover, the diagonal elements of A0 are zero.

PROOF: It is clear that R−1
0 (LP1)

−1R0 = A1 with A1 a diagonal matrix contain-
ing the eigenvalues of (LP1)

−1 since R0 contains the eigenvectors of (LP1)
−1.

It is also easy to see that Υ is invertible, i.e., υk 6= 0. Then, since Υ and A1 are
diagonal, it clearly follows that

Υ−1R−1
0 (LP1)

−1R0Υ︸︷︷︸
R

= Υ−1A1 Υ = A1.

Next we study the expression for A0 in (4.21) with R = R0 Υ. That is

A0 = −Υ−1R−1
0

(
P−1

1 P0R0Υ + (R0Υ)′
)

= −Υ−1R−1
0

(
P−1

1 P0R0Υ +R′
0 Υ +R0 Υ′)

= Υ−1
(
−R−1

0

(
P−1

1 P0R0 +R′
0

))
Υ − Υ−1 Υ′.
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4. Riesz Basis Property: Case N = 1

From this it is easy to see that the diagonal elements of A0 satisfy

[A0]kk = ϑk − υ′k
υk
, k = 1, . . . , n.

Clearly, by selecting υk = exp
(∫ z

0
ϑk(ξ) dξ

)
we can make the diagonal elements

of A0 equal to zero.

4.4. Eigenvalues of AL

Following the previous section, it is easy to prove the following corollary.

Corollary 4.9: Let Ψ̂(z, λ) be a fundamental matrix of equations (4.21)–(4.22).

Then M(z, λ) = R(z)Ψ̂(z, λ) is a fundamental matrix of (4.11), where R(z) is

given in (4.21). In addition, if Ψ̂(z, λ) is a transition matrix of (4.21)–(4.22), then

M(z, λ) = R(z)Ψ̂(z, λ)R−1(z) (4.30)

is a transition matrix of (4.11). ♠

Following Theorem 4.2 we have that the eigenvalues of AL are given by the zeros
of the characteristic determinant

∆(λ) = detH0(λ). (4.31)

Using Theorem 4.4 we obtain an asymptotic representation for this characteristic
determinant, see also Proposition 2.6 of [Tre00b] or [MM86, §5]. Here a function
of the form

[f(λ)]k =

k∑

j=0

λ−jfj + λ−ko(1)

is called an asymptotic polynomial of order k with respect to λ−1.

Theorem 4.10: Let M(z, λ) be a fundamental matrix of (4.11) as in Corol-
lary 4.9 and Theorem 4.4. Then, for sufficiently large λ ∈ C, i.e., |λ| > K, the
characteristic determinant ∆ of (4.11) and (4.13) has the asymptotic expansion

∆(λ) =
∑

c∈E

(
bc + {o(1)}∞

)
eλc. (4.32)

Here bc ∈ R and E is the set

E =

{
n∑

ν=1

δνRν(b) | δν = {0, 1}
}

⊂ R,
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4.4. Eigenvalues of AL

where Rν , ν = 1, 2, . . . , n, are given by (4.25). Furthermore, the nonzero coeffi-
cients bc correspond to the determinant of WbR(b)Ψ0(b)E(b, λ) + WaR(b), i.e.,

∑

c∈E
bc eλc = det

(
WbR(b)Ψ0(b)E(b, λ) +WaR(b)

)
. (4.33)

PROOF: Basically, we only need to replace Ψ̂(z, λ) in Theorem 4.4 by the expres-
sion for M(z, λ) given in Corollary 4.9, and use this in H0(λ), see Theorem 4.2.
That is,

H0(λ) = WbM(b, λ) +Wa

= WbR(b)
(
Ψ0(b) + Θ̂(b, λ)

)
E(b, λ)R−1(b) +Wa.

Since Θ̂(z, λ) = {o(1)}∞ and E(z, λ) is diagonal, we can see that each element of
H0(λ)R(b) can be written as [sb

νµ]0 eλRµ(b) + sa
νµ where [sb

νµ]0 = sb
νµ + {o(1)}∞,

sb
νµ ∈ R, is an asymptotic polynomial of order 0. Here, sb

νµ is the νµ-th compo-
nent of the matrix WbR(b)Ψ0(b) and sa

νµ is the νµ-th element of WaR(b). Recall

that Rµ(b) =
∫ b

a
rµ(ξ) dξ, see (4.25). Thus,

detH0(λ) = k det
(
[sb

νµ]0 eλRµ(b) + sa
νµ

)n

ν,µ=1
,

where k = 1/det(R(b)) is a constant. Next we use the definition of the deter-
minant, see [Mey01]. To do so, let p = (p1, p2, . . . , pn) be a permutation of
(1, 2, . . . , n) with σ(p) being the corresponding sign of this permutation. Also,
let epi,z = eλRpi(z) and ep1z1

,p2z2
,...,pkzk

= eλ[Rp1(z1)+Rp2(z2)+···+Rpk(zk)]. Thus,

det(H0(λ)) = k det
(
[WbR(b)Ψ0(b) + o(1)]E(b, λ) +WaR(b)

)

=k
∑

p

σ(p)[(sb
1,p1 + o(1))ep1,b + sa

1,p1ep1,a] · · · [(sb
n,pn + o(1))epn,b + sa

n,pn epn,a]

=k
∑

p

σ(p)
[
(sb

1,p1s
b
2,p2 + o(1))ep1b,p2b

+ (sb
1,p1s

a
2,p2 + o(1))ep1b,p2a

+ (sa
1,p1s

b
2,p2 + o(1))ep1a,p2b

+ (sa
1,p1s

a
2,p2)ep1a,p2a

]
· · ·

· · ·
[
(sb

n,pn + o(1))epn,b + (sa
n,pn + o(1))epn,a

]

=k
∑

p

σ(p)
[(
sb
1,p1s

b
2,p2 . . . s

b
n,pn + o(1)

)
ep1b,...,pnb

+
(
sb
1,p1 . . . s

b
n−1,p(n−1)s

a
n,pn + o(1)

)
ep1b,...,p(n−1)b,pna
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4. Riesz Basis Property: Case N = 1

+ · · · +
(
sa
1,p1 . . . s

a
n−1,p(n−1)s

b
n,pn + o(1)

)
ep1a,...,p(n−1)a,pnb

+
(
sa
1,p1 . . . s

a
n−1,p(n−1)s

a
n,pn

)
ep1a,...,p(n−1)a,pna

]
,

where we used κo(1) = o(1) for any constant κ. Recall that Rpi(a) = 0 and hence
epi,a = 1. From all this the result follows.

The next definitions are well-known, we recall it for the sake of completeness.

Definition 4.11. An entire function F (·) is said to be of exponential type if the
inequality

|F (z)| ≤ CeL|z|

holds for some positive constants C and L and all complex values of z.

A point z0 ∈ C such that F (z0) = 0 is called a zero of the entire function F . The
integer l such that F (z0) = F ′(z0) = · · · = F (l)(z0) = 0 but F (l+1)(z0) 6= 0 is
called the vanishing order of F . We say z0 is a simple zero of F if l = 0, otherwise,
it is called a multiple zero. An entire function of exponential type F is said to be
of sine-type if

(a) the zeros of F lie in a strip {z ∈ C | |Re z| ≤ c} for some c > 0;

(b) there exist constants c1, c2 > 0 and x0 ∈ R such that c1 ≤ |F (x0 + iy)| ≤ c2
for all y ∈ R. ♣

The following definition appears (implicitly or explicitly) often as an assumption
in applications.

Definition 4.12. Let E be the set obtained in Theorem 4.10 and define wM and
wm by

wM = max
c∈E

E , wm = min
c∈E

E ,

and let [bM ]0 = bM0 + {o(1)}∞ and [bm]0 = bm0 + {o(1)}∞ be the corresponding
coefficients in (4.32), respectively. The problem (4.11) and (4.13) is called normal
if bM0 6= 0 and bm0 6= 0. ♣

The importance of the definition above is that it guarantees that the spectrum is
bounded in some directions.

From Lemma 5.12 of [MM86] we obtain the following result.
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4.4. Eigenvalues of AL

Lemma 4.13: Let the problem (4.11) and (4.13) be normal. Then, there is a posi-
tive constant δ and a w ∈ E (w may depend on λ) such that Re (λ(c− w)) ≤ 0 for
c ∈ E and

lim
Re λ→±∞

|e−wλ∆(λ)| ≥ δ.

In addition, ∆(λ) is a sine-type function. As a consequence, the vanishing orders
of ∆ at its zeros are uniformly bounded and all its zeros lie in a vertical strip
parallel to the imaginary axis. ♥
PROOF: Notice that ∆(λ) is of exponential type and that the elements of E are
real, i.e., c ∈ R. Following the notation introduced in Definition 4.12 we get

lim
Re λ→∞

∣∣e−λwM ∆(λ)
∣∣ = lim

Re λ→∞
|[bM ]0| = |bM0| > 0,

lim
Re λ→−∞

∣∣e−λwm∆(λ)
∣∣ = lim

Re λ→−∞
|[bm]0| = |bm0| > 0.

(4.34)

Therefore, there exists a constant M > 0 such that ∆(λ) 6= 0 as |Reλ| > M .
Moreover, it is easy to see that |∆(x0 + iy)| is bounded below and above for some
|x0| > M , see (4.34). Hence it is clear by definition that ∆(λ) is a sine-type func-
tion. That the vanishing orders of ∆ at its zeros are uniformly bounded follows
from [AI95, Proposition II.1.28] or [GX06, Proposition 2.1]. This completes the
proof.

Example 4.14 Consider the wave equation, which can be modeled by (see Ex-
ample 1.6)

∂

∂t

[
p
q

]
=

[
0 1
1 0

]
∂

∂z

[ 1
ρp

Tq

]
, t ≥ 0, (4.35)

T (a)q(a, t) = 0,
1

ρ(b)
p(b, t) + T (b)q(b, t) = 0, (4.36)

where z ∈ [a, b] is the spatial variable, q(z, t) = ∂u
∂z (z, t) is the strain, p(z, t) =

ρ∂u
∂t (z, t) is the momentum distribution, u(z, t) is the displacement, T (z) is the

Young’s modulus, and ρ(z) is the mass density. Here 0 < Tm < T (z) < TM

and 0 < ρm < ρ(z) < ρM with Tm, TM , ρm, ρM (positive) constants. Let e =[ ep
eq

]
=
[

1
ρ p

Tq

]
, i.e., ep and eq are the velocity and the stress, respectively. Then the

port-variables are

[
f∂

e∂

]
=

√
2

2

[
P1 −P1

I I

] [
e(b)
e(a)

]
=

√
2

2




eq(b)−eq(a)
ep(b)−ep(a)
ep(b)+ep(a)
eq(b)+eq(a)


 =

[
f∂1

f∂2
e∂1
e∂2

]
. (4.37)

To the boundary conditions (4.36) there correspond a W =
[
W1, W2

]
matrix

given by

W1 =
1√
2

[
−1 0
1 1

]
, W2 =

1√
2

[
0 1
1 1

]
.
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4. Riesz Basis Property: Case N = 1

From this and equation (4.10c) we obtain

Wb =
√

2

[
0 0
1 1

]
, Wa =

√
2

[
0 1
0 0

]
.

We want to find the eigenvalues of this system, but since the parameters ρ and T
depend on z it is very hard to find an exact expression for them. We will use the
approach presented here to find an asymptotic approximation of the eigenvalues
of the system. From Theorem 4.10 we see that we need first to find the matrices
R and Ψ0, see (4.33). We also use Theorem 4.8 in order to make the diagonal
elements of A0 zero. Since the diagonal elements of −R−1

0 R′
0 (note P0 = 0) are

1
4 (Tρ)′/(Tρ) (a prime ′ denotes differentiation with respect to z), in this case,
R0(z) and Υ(z) are given by

R0(z) =

[
1 1

√
(Tρ)(z) −

√
(Tρ)(z)

]
, Υ(z) = exp

(
−1

4
ln
(
(Tρ)(z)

))[ 1 0
0 1

]
.

Hence R = R0 Υ is

R = exp

(
−1

4
ln
(
(Tρ)(z)

))
[

1 1
√

(Tρ)(z) −
√

(Tρ)(z)

]
.

This selection of R guarantees that the diagonal elements (only the diagonal ele-
ments) are zero, see Theorem 4.8. This is all we need to calculate about A0 since
only its diagonal elements are needed in the subsequent calculations. From this
selection of R and (4.21) we get (for simplicity we drop the dependance on the
variables z and λ)

A1 =

√
ρ

T

[
1 0
0 −1

]
⇒ E =


 exp

(
λ
∫ z

a

√
ρ(ξ)
T (ξ) dξ

)
0

0 exp
(
−λ
∫ z

a

√
ρ(ξ)
T (ξ) dξ

)




and [A0]νν = 0, ν = 1, 2. It thus follows that in Theorem 4.4 Ψ0 = I . Note
that the set E appearing in Theorem 4.10, in this case, is given by (noting that

R1(b) =
∫ b

a

√
ρ(ξ)/T (ξ) dξ and R2(b) = −

∫ b

a

√
ρ(ξ)/T (ξ) dξ, see (4.25))

E = {R1(b) +R2(b), R1(b), R2(b), 0} = {0, R1(b), R2(b), 0}

=

{∫ b

a

√
ρ(ξ)

T (ξ)
dξ, −

∫ b

a

√
ρ(ξ)

T (ξ)
dξ, 0

}
. (4.38)

From (4.33) we get

det
(
WbR(b)Ψ0(b)E(b, λ) +WaR(b)

)

= kb

(
1 +

√
(T ρ)(b)

)
E1(b, λ) + kb

(
1 −

√
(T ρ)(b)

)
E2(b, λ) (4.39)
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4.5. Minimality, completeness, and Riesz basis property

whereEi(b, λ), i = 1, 2, is the i-th diagonal element ofE(b, λ) and kb = 2
√
T ρ(b).

Following Definition 4.12 and (4.38) we can see that wM =
∫ b

a

√
ρ(ξ)/T (ξ) dξ and

wm = −
∫ b

a

√
ρ(ξ)/T (ξ) dξ. Thus, the problem will be normal if the respective

coefficients of eλwM and eλwm in ∆ are nonzero. From the equation above, we can

see it is equivalent to kb

(
1 +

√
(T ρ)(b)

)
and kb

(
1 −

√
(T ρ)(b)

)
being different

than zero, i.e., 1 6=
√

(T ρ)(b). In fact, again from Theorem 4.10, we get that the
characteristic determinant has the asymptotic expansion (for λ large enough)

∆(λ) =
(
kb

(
1 +

√
(T ρ)(b)

)
+ {o(1)}∞

)
exp

(
λ

∫ b

a

√
ρ(ξ)

T (ξ)
dξ

)
+ {o(1)}∞ exp(0)

+
(
kb

(
1 −

√
(T ρ)(b)

)
+ {o(1)}∞

)
exp

(
−λ
∫ b

a

√
ρ(ξ)

T (ξ)
dξ

)
. (4.40)

We know that the roots of ∆ are the eigenvalues of the system, see Theorem 4.2.
By Rouché’s theorem, the roots of ∆ can be estimated by those of (4.39), that is,

by the roots of det
(
WbR(b)Ψ0(b)E(b, λ) + WaR(b)

)
. These roots can be found

explicitly, and are given by

λ̃m =





− 1

2
R b

a

q
ρ(ξ)
T (ξ)

dξ
ln

∣∣∣∣
√

(T ρ)(b)+1√
(T ρ)(b)−1

∣∣∣∣− i π mR b
a

q
ρ(ξ)
T (ξ)

dξ
if
√

(T ρ)(b) > 1

− 1

2
R b

a

q
ρ(ξ)
T (ξ)

dξ
ln

∣∣∣∣
√

(T ρ)(b)+1√
(T ρ)(b)−1

∣∣∣∣− i π(1+2m)

2
R b

a

q
ρ(ξ)
T (ξ)

dξ
if
√

(T ρ)(b) < 1

m ∈ Z

Thus, the roots of (4.40) satisfy (by Rouché’s theorem)

λm = λ̃m +O(m−1), |m| > N1, m ∈ Z, (4.41)

where N1 is some sufficiently large positive integer. ∗

4.5. Minimality, completeness, and Riesz basis
property

In this section we investigate minimality and completeness properties of the
eigenfunctions of the problem (4.11)–(4.13). We do it by proving all this for
the auxiliary eigenvalue problem (4.21)–(4.23). Related to the eigenvalue prob-
lem (4.21)–(4.22) we can define the operator Aφ as follows

Aφy = A−1
1

∂y

∂z
−A−1

1 A0y = R−1LP1
∂Ry

∂z
+R−1LP0(Ry), (4.42a)
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4. Riesz Basis Property: Case N = 1

with domain

D(Aφ) =
{
Ry ∈ H1(a, b; Rn) | Wb(Ry)(b) +Wa(Ry)(a) = 0

}
. (4.42b)

It is easy to see that the eigenvalue problem related to the operator Aφ is the
same as the eigenvalue problem (4.21)–(4.22). That is, if λ is an eigenvalue of Aφ

with corresponding eigenvector φ then these λ and φ satisfy (4.21)–(4.22), and
viceversa. From this, we can easily obtain the eigenvalues and eigenvectors of
AL with the help of the following lemma.

Lemma 4.15: Consider the operator Aφ defined by (4.42) and the operator AL
defined by (4.10). Then,

i) y ∈ D(Aφ) if and only if x = L−1Ry ∈ D(AL), or equivalently, y =
R−1Lx ∈ D(Aφ) if and only if x ∈ D(AL),

ii) If λ is an eigenvalue of Aφ with corresponding eigenvector y. Then λ is
an eigenvalue of AL with corresponding eigenvector x = L−1Ry.

iii) If λ is an eigenvalue of AL with corresponding eigenvector x. Then λ is
an eigenvalue of Aφ with corresponding eigenvector y = R−1Lx. ♥

PROOF: i) Let y ∈ D(Aφ). It thus satisfiesWb(Ry)(b)+Wa(Ry)(a) = 0. By letting
Ry = Lx, it is clear that x = L−1Ry ∈ D(AL). The other part of the proof follows
the same idea.

ii) Let λ be an eigenvalue of Aφ with corresponding eigenvector y. It thus fol-
lows, by using (4.21), that

λy = A−1
1

∂y

∂z
−A−1

1 A0y = R−1LP1R
∂y

∂z
+ (R−1LP1R)(R−1P−1

1 P0R+R−1R′)y

= R−1LP1R
∂y

∂z
+R−1LP0Ry +R−1LP1R

′y

= R−1LP1
∂Ry

∂z
+R−1LP0(Ry) ( this justifies (4.42a) ).

By letting Lx = Ry yields λx = ALx.

iii) Let λ be an eigenvalue of AL with corresponding eigenvector x. It thus fol-
lows, by letting Lx = Ry, that

λx = P1
∂Lx
∂z

+ P0(Lx)

⇒ λR−1Lx = R−1LP1
∂Lx
∂z

+R−1LP0(Lx)

⇒ λy = R−1LP1
∂Ry

∂z
+R−1LP0(Ry) = Aφy.

From this the result follows.
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4.5. Minimality, completeness, and Riesz basis property

Following this we can study the minimality and completeness properties of the
eigenfunctions of the problem (4.21)–(4.23) and from there we can obtain the
same results for the operator AL. To do so, we introduce the related holomorphic
operator function T on C given by

T (λ) = T0 − λT1, (4.43)

where the bounded linear operators T0, T1 ∈ L(H1(a, b)n, L2(a, b)
n × C

n) are

T0y :=

[
y′ −A0y

Wb(Ry)(b) +Wa(Ry)(a)

]
, T1y :=

[
A1y
0

]
, (4.44)

with Wb and Wa defined by (4.10c). Note that (4.43)–(4.44) corresponds to the
eigenvalue problem related to Aφ. For the operator T we define the resolvent set
of T as

ρ(T ) := {λ ∈ C : T (λ) is invertible },
σ(T ) = C\ρ(T ) is the spectrum of T , and T−1 is called the resolvent of T ,
see [MM03, §1.2]. Note that, in this case, T−1T = IH1 and TT−1 = IL2×C,
where IY is the identity operator on the space Y . λν is said to be an eigenvalue
of (4.21)–(4.23), i.e., of Aφ, if λν is in the point spectrum of T , i.e., λν ∈ σp(T ), and

{ys
ν}pν−1

s=0 ⊂ H1(a, b)n is called a chain of eigenfunction and associated functions
of (4.21)–(4.23) at λν if it is a chain of an eigenfunction and associated functions
of T at λν , i.e., y0

ν is an eigenvector of T at λν and for

yν(λ) =

pν−1∑

s=0

(λ− λν)sys
ν

the function Tyν has a zero of order greater than or equal to pν at λν . If µ is an

eigenvalue of finite algebraic multiplicity, then a system {ys
j}

pj−1, r
s=0, j=1 is called a

canonical system of eigenfunctions and associated functions of (4.21)–(4.23) at µ
if it is a canonical system of eigenfunctions and associated functions of T at µ,
i.e.,

i) {y0
1 , . . . , y

0
r} is a basis of kerT (µ),

ii) {ys
j}

pj−1
s=0 is a maximal chain of an eigenfunction and associated functions

for j = 1, 2, . . . , r,

iii) pj = sup{p(µ, x0) | x0 ∈ kerT (µ)\ span {y0
k | k < j}}, j = 1, . . . , r, where

p(µ, x0) denotes the rank of an eigenvector x0.

In this case, a chain {ys
ν}pν−1

s=0 of an eigenfunction and associated functions of the
eigenvalue problem (4.23), and hence of T , at λν fulfills the relations

T0y
s
ν − λνT1y

s
ν = T1y

s−1
ν , s = 0, 1, . . . , pν − 1, y−1

ν := 0.

It is well-known that T (λ) is Fredholm with index zero for each λ ∈ C, [MM86].
Therefore, if the resolvent set ρ(T ) is non-empty, σ(T ) is a discrete subset of C,
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4. Riesz Basis Property: Case N = 1

σ(T ) = σp(T ), all eigenvalues are of finite algebraic multiplicity and accumulate
only at infinity (see [MM86, Chapter 7]). Notice that if λν is an eigenvalue of
T , and hence of Aφ, then it is an eigenvalue of AL by Lemma 4.15; and the
eigenvectors are related by the same lemma.

ASSUMPTION 4.16: Throughout this section we will assume that the eigenvalue
problem (4.11) and (4.13) is normal, see Definition 4.12. ♥

Here we want to use the results of [Tre00b] and [Tre00a]. There, the author as-
sumes that the problem (4.21)–(4.23) is non-degenerate, i.e., ρ(T ) 6= ∅. Observe
that here we have that C+ ⊂ ρ(T ), cf. Theorem 4.2, and thus that condition is
satisfied. Without loss of generality we assume that 0 ∈ ρ(T ), that is, T0 is bijec-
tive. Otherwise we substitute T0 by T0 − λ0T1 and λ by λ − λ0, with λ0 ∈ ρ(T ).
Observe that this substitution changesA0 toA0+λ0A1 and since we do not make
any assumptions on A0 it is obvious that the assumption 0 ∈ ρ(T ) is valid.

Remark 4.17. It is worth to mention that 0 ∈ ρ(T ) ⇐⇒ 0 ∈ ρ(AI), with
L = I . ♣

From Lemma 1.1 of [Tre00a] we can see that the linear pencil Kr := I − λT1T
−1
0

is equivalent to T = T0 −λT1, i.e., ρ(T ) = ρ(Kr), σ(T ) = σ(Kr), σp(T ) = σp(Kr).
Also, it is easy to prove that T1 is a compact operator, see [Tre00b, Lemma 3.1].

Definition 4.18. Let G be a Banach space. A system {ei}∞1 ⊂ G is called minimal
if there exists a system {fj}∞1 ⊂ G′ (the dual of G) which is biorthogonal to
{ei}∞1 :

〈ei, fj〉 := fj(ei) = δij , i, j = 1, 2, . . . .

The system {ei}∞1 is called minimal with defect m, m ∈ N0, if there exists m ele-
ments ei1 , . . . , eim

⊂ {ei}∞1 such that {ei}∞1 \{ei1 , . . . , eim
} is minimal and

span ({ei}∞1 \{ei1 , . . . , eim
}) = span {ei}∞1 .

The number m is called the defect of minimality. ♣

The following theorem is an adaptation of Theorem 2.4 of [Tre00a], where we use
the fact that T1 is compact.

Theorem 4.19: Consider the operators T0, T1 ∈ L(H1(a, b)n, L2(a, b)
n × C

n)
and let {ys

ν} be a canonical system of eigenvectors and associated vectors of
the linear pencil T (λ) = T0 − λT1. Then

i) {ys
ν} is minimal in H1(a, b)n,

ii) {T1y
s
ν} is minimal in L2(a, b)

n × C
n,
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4.5. Minimality, completeness, and Riesz basis property

and there exists a canonical system {vt
µ} ⊂ L2(a, b)

n × C
n of eigenvectors and

associated vectors of the adjoint linear pencil T ∗(λ) = T ∗
0 − λT ∗

1 such that

iii) {−T ∗
1 v

pµ−1−t
µ } ⊂ H1(a, b)n is biorthogonal to {ys

ν},

iv) {−vpµ−1−t
µ } ⊂ L2(a, b)

n × C
n is biorthogonal to {T1y

s
ν},

where pµ denotes the rank of the eigenvector y0
µ and T ∗

1 is the Hilbert adjoint
operator of T1.

Theorem 4.20: Let {ys
ν} be a canonical system of eigenvectors and associated

vectors of (4.21)–(4.23) and hence of the linear pencil T (λ) = T0 − λT1. Let
{vt

µ} be a canonical system of eigenvectors and associated vectors of T ∗(λ) =

T ∗
0 − λT ∗

1 , and define V := span {ys
ν}, W := span {vs

µ}. Then

V = T−1
0

([
ker
(
(T1T

−1
0 )∗

)2
]⊥)

and W = T−∗
0

([
ker(T−1

0 T1)
2
]⊥)

.

(4.45)
Furthermore, let P denote the orthogonal projection of L2(a, b)

n × C
n onto

L2(a, b)
n and let Q = I − P denote the orthogonal projection onto C

n. Then,
the system {PT1y

s
ν} and {ys

ν} are complete and minimal with finite defect m0

in PT1V = A1V ⊂ L2(a, b)
n, where

m0 = codimQW(QW ∩Q(T1V)⊥). (4.46)

PROOF: Equation (4.45) follows easily from Theorems 3.3 and 3.4 of [Tre00b] by
noticing that, in this case, κ0 = 0 and κ2 = 2 (using the notation of [Tre00b]).

By Theorem 4.19 we know that {T1y
s
ν} is minimal inL2(a, b)

n×C
n with biorthog-

onal system {−vpµ−1−t
µ }. Clearly codim ran (P) = n < ∞, which allows us to

use Theorem 2.4 of [Tre00a] to conclude that {PT1y
s
ν} is minimal with defect m0

given by (4.46). The rest of the proof ensue from {PT1y
s
ν} = {A1y

s
ν} and the

invertibility of A1, see Assumption 4.3 andequation (4.21).

In order to look more closely the spaces V and W in (4.45) we find the operators
T1T

−1
0 and (T1T

−1
0 )∗. The inverse of T0 can be found as follows. LetM0(z) be the

transition matrix of y′ − A0y = 0 with corresponding Cauchy matrix M0(z, τ),
see Section 4.1, and let [ u

d ] ∈ L2(a, b)
n × C

n be arbitrary. Then

T0y =

[
u
d

]
⇒
[

y′ −A0y
Wb(Ry)(b) +Wa(Ry)(a)

]
=

[
u
d

]
.
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4. Riesz Basis Property: Case N = 1

Using the top equation, we get

y(z) = M0(z)y(a) +

∫ z

a

M0(z, τ)u(τ) dτ,

and substituting this for y(z) in the second relation yields

WbR(b)

[
M0(b)y(a) +

∫ b

a

M0(b, τ)u(τ) dτ

]
+WaR(a)y(a) = d.

Thus

y(a) =
(
WbR(b)M0(b) +WaR(a)

)

︸ ︷︷ ︸
H0

−1
[
−WbR(b)

∫ b

a

M0(b, τ)u(τ) dτ + d

]
,

(4.47)

provided H0 is invertible. Clearly M0(z) also corresponds to the fundamental

matrix of y′ − A0y − λA1y = 0 when λ = 0, i.e., M0(z) = Ψ̂(z, λ = 0). Then,
applying the same arguments used to prove Theorem 4.2.i (see the paragraphs
before that theorem) we can see that the matrix H0 above is nonsingular since
we assumed that 0 ∈ ρ(T ) = ρ(Aφ).

Altogether gives the following lemma.

Lemma 4.21: The operator T−1
0 ∈ L(L2(a, b)

n × C
n, H1(a, b)n) is given by

(
T−1

0

[
u
d

])
(z) = M0(z)H

−1
0

[
−WbR(b)

∫ b

a

M0(b, τ)u(τ) dτ + d

]
(4.48)

+

∫ z

a

M0(z, τ)u(τ) dτ,

for any [ u
d ] ∈ L2(a, b)

n × C
n, where H0 is given in (4.47). Thus using (4.44)

and (4.48) we obtain

T1T
−1
0

[
u
d

]
(z) =

[
A1(z)M0(z)H

−1
0

[
−WbR(b)

∫ b

a
M0(b, τ)u(τ) dτ + d

]

0

]

+

[
A1(z)

∫ z

a
M0(z, τ)u(τ) dτ

0

]
. (4.49)

♥

PROOF: It can be checked directly that T0

(
T−1

0 [ u
d ]
)

= [ u
d ] and by using integra-

tion by parts it follows that T−1
0 T0y = y for all y ∈ H1(a, b).
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4.5. Minimality, completeness, and Riesz basis property

Lemma 4.22: The adjoint of the operator T1T
−1
0 given by (4.49) is

(T1T
−1
0 )∗

[
v
c

]
(z)

=

[
−MT

0 (b, z)
∫ b

a
RT (b)WT

b H
−T
0 MT

0 (τ)(A1v)(τ) dτ +
∫ b

z
MT

0 (τ, z)(A1v)(τ) dτ∫ b

a
H−T

0 MT
0 (z)(A1v)(z) dz

]

(4.50)

♥

PROOF: The adjoint of T1T
−1
0 is determined by (recall that A1(z) is symmetric)

〈
(T1T

−1
0 )−∗

[
v
c

]
,

[
u
d

]〉

L2×C

=

〈[
v
c

]
, (T1T

−1
0 )

[
u
d

]〉

L2×C

=

〈
v,A1M0(z)H

−1
0

[
−WbR(b)

∫ b

a

M0(b, τ)u(τ) dτ + d

]〉

L2

+

〈
v,A1

∫ z

a

M0(z, τ)u(τ) dτ

〉

L2

.

The proof follows easily from this by using Fubini’s theorem and making use of
a change of variable.

Proposition 4.23: Assume all conditions in Theorem 4.20 are satisfied. Then, the
subspace V is given by

V =
{
y ∈ H1(a, b)n | Wb(Ry)(b) +Wa(Ry)(a) = 0

}
,

and it is dense in L2(a, b)
n. ♥

PROOF: First we show that the kernel of (T1T
−1
0 )∗ is {0} × C

n. To do so, let [ v
c ]

be such that (T1T
−1
0 )∗ [ v

c ] = 0. This implies, from (4.50), that

0 = −MT
0 (b, z)

∫ b

a

RT (b)WT
b H

−T
0 MT

0 (τ)(A1v)(τ) dτ +

∫ b

z

MT
0 (τ, z)(A1v)(τ) dτ

⇒ MT
0 (b, z)

∫ b

a

RT (b)WT
b H

−T
0 MT

0 (τ)(A1v)(τ) dτ =

∫ b

z

MT
0 (τ, z)(A1v)(τ) dτ.

(4.51)

Differentiating (with respect to z) the equation above yields

0 = AT
0 (z)MT

0 (b, z)

∫ b

a

RT (b)WT
b H

−T
0 MT

0 (τ)(A1v)(τ) dτ

−AT
0 (z)

∫ b

z

MT
0 (τ, z)(A1v)(τ) dτ + (A1v)(z).
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Substituting (4.51) in the equation above gives

A1v(z) = 0, ⇒ v(z) = 0.

From this we conclude that ker(T1T
−1
0 )∗ = {0} × C

n. Now note that
(T1T

−1
0 )∗ [ v

c ] ∈ ker(T1T
−1
0 )∗ if

0 = −MT
0 (b, z)

∫ b

a

RT (b)WT
b H

−T
0 MT

0 (τ)(A1v)(τ) dτ +

∫ b

z

MT
0 (τ, z)(A1v)(τ) dτ.

The argument presented above gives v(z) = 0. Hence we have ker
(
(T1T

−1
0 )∗

)k

=

ker(T1T
−1
0 )∗ = {0} × C

n for k ≥ 1. Thus, y ∈ H1(a, b)n is in V , see (4.45), if and
only if

y ∈ V ⇐⇒ T0y ⊥ {0} × C
n

⇐⇒
〈
T0y,

[
0
I

]〉

L2×Cn

= 0

⇐⇒ Wb(Ry)(b) +Wa(Ry)(a) = 0.

From this the result follows. The denseness follows from the denseness of the
domain of the semigroup generator AL, since V = D(R−1LAL) and (R−1L)−1 is
invertible.

Theorem 4.24: Assume all conditions of Theorem 4.20 are satisfied and let
{ys

ν} be a canonical system of eigenvectors and associated vectors of (4.21)
and (4.23) and hence of the linear pencil T (λ) = T0 − λT1. Then the canon-
ical system {ys

ν} is complete in L2(a, b)
n, i.e.,

span {ys
ν} = L2(a, b)

n.

PROOF: We want to approximate any function, say x, in L2(a, b)
n by a linear

combination of {ys
ν}. First note, from Theorem 4.20, that span {ys

ν} = V , this
implies that for all y ∈ V and for all ǫ > 0 there exist N > 0 and αν , ν = 1, . . . , N ,
such that ∥∥∥∥∥y −

N∑

ν=0

αν y
s
ν

∥∥∥∥∥
H1(a,b)n

<
ǫ

2
.

Also, from Proposition 4.23, it is easy to see that V is dense inL2(a, b)
n, and hence

for x ∈ L2(a, b)
n there exist y ∈ V such that

‖x− y‖ < ǫ

2
.
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Altogether gives for x ∈ L2(a, b)
n

∥∥∥∥∥x−
N∑

ν=0

αν y
s
ν

∥∥∥∥∥ ≤ ‖x− y‖ +

∥∥∥∥∥y −
N∑

ν=0

αν y
s
ν

∥∥∥∥∥

≤ ‖x− y‖ +

∥∥∥∥∥y −
N∑

ν=0

αν y
s
ν

∥∥∥∥∥
H1(a,b)n

≤ ǫ,

where we used the fact that ‖w‖ ≤ ‖w‖H1(a,b)n for all w ∈ H1(a, b)n. This shows

that span {ys
ν} is dense in L2(a, b)

n and from this the result follows.

Proposition 4.25: Assume all conditions on Theorem 4.20 hold. Then, the sub-
space W is given by

W = L2(a, b)
n × C

n. (4.52)

♥

PROOF: First we we study the kernel of the operator T−1
0 T1. First observe from

equation (4.48) that

(T−1
0 T1y)(z) = M0(z)H

−1
0

[
−WbR(b)

∫ b

a

M0(b, τ)(A1y)(τ) dτ

]

+

∫ z

a

M0(z, τ)(A1y)(τ) dτ. (4.53)

From this and since A1 is invertible we immediately see that

ker(T−1
0 T1) = ker(T1) = {0}, and hence ker(T−1

0 T1)
2 = {0}.

Therefore, with respect to the inner product on H1(a, b)n,
(
ker(T−1

0 T1)
2
)⊥

=
H1(a, b)n. In particular, the subspace W appearing in Theorem 4.20 is

W = T−∗
0

(
H1(a, b)n

)
= L2(a, b)

n × C
n.

From this we obtain the following proposition.

Proposition 4.26: Assume all conditions of Theorem 4.20 hold. Then, (T1V)⊥ =
{0} × C

n, and consequently

m0 = codimQW(QW ∩Q(T1V)⊥) = 0. ♥
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4. Riesz Basis Property: Case N = 1

PROOF: The first condition is easy to prove. Indeed, any [ u
d ] ∈ L2(a, b)

n × C
n is

in (T1V)⊥ if and only if for all y ∈ V

0 =

〈[
u
d

]
, T1y

〉

L2×C

=

〈[
u
d

]
,

[
A1y
0

]〉

L2×C

= 〈u,A1y〉L2
= 〈A1u, y〉L2

.

Since V is dense in L2(a, b)
n, see Proposition 4.23, it follows that A1u = 0 and

consequently u = 0. The rest of the proof follows easily from this and (4.52),
since QW = C

n and Q(T1V)⊥ = C
n.

Following Theorem 3.11 of [Tre00b] we obtain the following theorem.

Theorem 4.27: Assume that the problem (4.11) and (4.13) is normal and that
A0, A1 ∈ Mn(W 2,∞(a, b)). Let {ys

ν} be a canonical system of eigenvectors and
associated vectors of (4.21) and (4.23) and hence of the linear pencil T (λ) =
T0 − λT1. Then {ys

ν} is a Riesz basis with parentheses in the subspace V ⊂
H1(a, b)n described in 4.20 and a Riesz basis with parentheses in L2(a, b)

n.

Moreover, it is only necessary to combine in parentheses the eigenfunctions
and associated functions corresponding to eigenvalues the distance between
which is smaller than δ where δ > 0 may be chosen arbitrarily small. If all the
eigenvalues satisfy

inf
n6=m

|λn − λm| > 0,

the basis property hold without parentheses.

PROOF: The proof can be found in [Tre00b, §3]. Observe that there, the basis
property in L2(a, b)

n has finite defect less or equal to m0, see Theorem 4.20. But
following Proposition 4.26, we have that m0 = 0.

Corollary 4.28: Assume that the problem (4.11) and (4.13) is normal and that
L ∈ Mn(W 2,∞(a, b)). Let {xs

ν} be a canonical system of eigenvectors and associ-
ated vectors of the operator AL given by (4.10). If the eigenvalues of AL satisfy

inf
n6=m

|λn − λm| > 0,

then {xs
ν} is a Riesz basis in L2(a, b)

n. ♠

PROOF: This follows from Theorem 4.27 since L ∈ Mn(W 2,∞(a, b)) implies that
A0, A1 ∈Mn(W 2,∞(a, b)) and xs

ν = L−1Rys
ν , see Lemma 4.15, where L−1R is an

invertible operator.
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4.5. Minimality, completeness, and Riesz basis property

Example 4.29 (Continuation of Example 4.14) Consider the system described
in Example 4.14. There we had that the eigenvalues are expressed by (4.41)
for large λ. It is clear from there that the eigenvalues are separated, i.e.,
infn6=m |λn − λm| > 0. It thus follows that the system has the Riesz basis
property, and hence, it satisfies the spectrum-determined growth condition

provided kb

(
1 +

√
(T ρ)(b)

)
6= 0 and kb

(
1 −

√
(T ρ)(b)

)
6= 0, i.e., the system is

normal. From this we can conclude exponential stability as follows. Note that
for |λ| > M1, we have from (4.41)

Reλm = − 1

2
∫ b

a

√
ρ(ξ)
T (ξ) dξ

ln

∣∣∣∣∣

√
(T ρ)(b) + 1√
(T ρ)(b) − 1

∣∣∣∣∣ < −δ < 0, δ > 0.

Thus if AL does not have eigenvalues on the imaginary axis, the system will be
exponentially stable. To check this, assume that λ0 ∈ iR is an eigenvalue of AL
with corresponding eigenvector v. Then, by using the boundary conditions we
have

0 = Re (λ0 〈v, v〉L) = Re 〈ALv, v〉L =

([ 1
ρ(z)v1(z)

(Tv2)(z)

]T

P1

[ 1
ρ(z)v1(z)

(Tv2)(z)

])z=b

z=a

=

[
−(Tv2)(b)
(Tv2)(b)

]T [
0 1
1 0

] [
−(Tv2)(b)
(Tv2)(b)

]
−
[

v1(a)
ρ(a)

0

]T [
0 1
1 0

] [ v1(a)
ρ(a)

0

]

= − 2(Tv2)
2(b), (4.54)

which implies, see (4.36), that (Tv2)(b) = (ρ−1v1)(b) = 0. This in turn, implies by
Holmgren’s Theorem, that v(z) = 0, which is a contradiction since it is an eigen-
vector. Thus, there are no eigenvalues on the imaginary axis, and we conclude
that the system is exponentially stable. ∗

Example 4.30 (Timoshenko beam with boundary damping) In this example
we study a linear system of Timoshenko type beam equations with boundary
feedback. In [XF02] the authors prove that the system of eigenfunctions and
associated eigenfunctions forms a Riesz basis in the state space. Here we prove
the same result using our approach. This can be consider as a continuation
of Example 3.27 on page 81. The model together with the port-variables are
described in Example 2.19 on page 42.

The Riesz basis property of the Timoshenko beam under this boundary con-
ditions was only proved recently by Xu and Feng in [XF02] where they dedi-
cate that paper to prove that result. Here we prove the same result using our
approach. First we find the operator (matrix) R that diagonalizes the matrix
(LP1)

−1 and hence giving the eigenvalue problem (4.23). For simplicity, we as-
sume that the beam is homogeneous and inextensible as it is done in [XF02].
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4. Riesz Basis Property: Case N = 1

This, in turn, implies that L is a constant matrix, simplifying the expression of
A0, see (4.21). This R is given by (for simplicity we denote EI by E)

R =




√
K ρ 0 −√

Kρ 0
1 0 1 0
0

√
E Iρ 0 −

√
E Iρ

0 1 0 1


 .

Using equation (4.21) this gives A1 = diag{
√

ρ
K ,
√

Iρ

E , −
√

ρ
K , −

√
Iρ

E } and

A0 =




0 1
2 0 1

2

− 1
2

√
Kρ
E Iρ

0 1
2

√
Kρ
E Iρ

0

0 1
2 0 1

2
1
2

√
Kρ
E Iρ

0 − 1
2

√
Kρ
E Iρ

0



.

If ρ
K 6= Iρ

E then the block diagonal matrices appearing in (4.24) have dimension

1. If otherwise ρ
K =

Iρ

E then the block diagonal elements have dimension 2. In
the first case, it is easy to see that Ψ0 = I , since Ψ0 is the fundamental matrix of
Ψ′

0,νν − A0,ννΨ0,νν = 0, see (4.28), and the diagonal elements of A0, i.e., A0,νν ,

are zero. In [XF02] the authors assumed ρ
K 6= Iρ

E , and so we follow the same
assumption, which implies Ψ0 = I . From the selection of A1 we have that the
corresponding exponential matrix E(z, λ) is given by

E(z, λ) = diag

{
eλ
√

ρ
K (z−a), eλ

q
Iρ
E (z−a), e−λ

√
ρ
K (z−a), e−λ

q
Iρ
E (z−a)

}
.

Note that the set E appearing in Theorem 4.10, in this case, is given by (noting

that R1(b) =
√

ρ
K (b− a), R2(b) =

√
Iρ

E (b− a), R3(b) = −
√

ρ
K (b− a) and R4(b) =

−
√

Iρ

E (b− a), see (4.25))

E =





4∑

j=1

Rj(b),
3∑

j=1

Rj(b),
2∑

j=1

Rj(b),
4∑

j=2

Rj(b), . . . , R1(b), R2(b), R3(b), R4(b)





=

{(√
ρ

K
+

√
Iρ
E

)
(b− a), . . . , 0, . . . , −

(√
ρ

K
+

√
Iρ
E

)
(b− a)

}
, (4.55)

where E has been organized in descending order. Recall that the matrix W that
determines the boundary conditions (3.15) is given in (3.16) (with αi, i = {1, 2},
the given gain feedback constants). Thus, the matrices Wb and Wa in (4.10c) are

Wb =
√

2




0 0 0 0
0 0 0 0
1 α1 0 0
0 0 1 α2


 , Wa =

√
2




0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0


 .
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4.5. Minimality, completeness, and Riesz basis property

From (4.33) we then get

det
(
WbR(b)Ψ0(b)E(b, λ) +WaR(b)

)

= 4
(
(
√
K ρ+ α1) eλ

√
ρ
K (b−a) + (

√
K ρ− α1) e−λ

√
ρ
K (b−a)

)

(
(
√
E Iρ + α2) eλ

q
Iρ
E (b−a) + (

√
E Iρ − α2) e−λ

q
Iρ
E (b−a)

)
.

(4.56)

Following Definition 4.12 and (4.55) we see that

wM =

(√
ρ

K
+

√
Iρ
E

)
(b− a), and wm = −

(√
ρ

K
+

√
Iρ
E

)
(b− a).

Thus, the problem will be normal if the respective coefficients of eλwM and eλwm

in ∆ are nonzero. But from equation (4.56), we can see it is equivalent to (
√
K ρ+

α1)(
√
E Iρ+α2) and (

√
K ρ−α1)(

√
E Iρ−α2) being different than zero, or which

is the same, that
√
K ρ 6= α1 and

√
E Iρ 6= α2. This last condition is similar to the

one appearing in [XF02]. Again from Rouché’s theorem, we get that the roots of
the characteristic determinant can be approximated by those of (4.56) (for λ large
enough). These roots can be found explicitly, and are given by

µ̃m =





1
2(b−a)

√
K
ρ ln

∣∣∣ (
√

K ρ−α1)

(
√

K ρ+α1)

∣∣∣+ i π m
(b−a)

√
K
ρ if (

√
K ρ− α1) < 0

1
2(b−a)

√
K
ρ ln

∣∣∣ (
√

K ρ−α1)

(
√

K ρ+α1)

∣∣∣+ iπ(1+2m)
2(b−a)

√
K
ρ if (

√
K ρ− α1) > 0

ν̃m =





1
2(b−a)

√
E
Iρ

ln

∣∣∣∣
(
√

E Iρ−α2)

(
√

E Iρ+α2)

∣∣∣∣+ i π m
(b−a)

√
E
Iρ

if (
√
E Iρ − α2) < 0

1
2(b−a)

√
E
Iρ

ln

∣∣∣∣
(
√

E Iρ−α2)

(
√

E Iρ+α2)

∣∣∣∣+ iπ(1+2m)
2(b−a)

√
E
Iρ

if (
√
E Iρ − α2) > 0

with m ∈ Z. Thus, by Rouché’s theorem, the roots of (4.32) satisfy for λ = µ or
λ = ν large enough

µm = µ̃m +O(m−1), and νm = ν̃m +O(m−1), |m| > N1, m ∈ Z, (4.57)

whereN1 is some sufficiently large positive integer. Since we assumed ρ
K 6= Iρ

E , it
is easy to see that the eigenvalues satisfy the gap condition in Corollary 4.28 and,
thus, the system has the Riesz basis property. Hence, the spectrum-determined
growth condition is satisfied, see [CZ95b]. Observe that the real part of µ̃m and
ν̃m is always negative. It is also possible to check that this system does not have
eigenvalues on the imaginary axis, see Example 3.27, and hence we can conclude
exponential stability by the spectrum-determined growth condition. ∗
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4. Riesz Basis Property: Case N = 1

Remark 4.31. Even though the approach may seen complicated, it simplifies
(when applicable) the application of the existing methods since the result pre-
sented here holds for class of systems rather than a particular case. For instance,
the completeness of the generalized eigenfunctions is already proved here, and
thus the number of steps needed to prove the Riesz basis property is reduced.
Compare Example 4.30 with [XF02]. ♣
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Chapter 5

Stability and Stabilization

In this chapter we study stability and stabilization properties of the energy pre-
serving systems described in Chapter 2 and 3. Stability is a key property in most
of control systems, and its validity is one of the first aims in the design of control
systems. It is well-know that stability analysis of infinite-dimensional systems is
more complicated in compared with the finite-dimensional case. In this chapter
we try to provide some tools that can facilitate the stability analysis of a class
of distributed parameter systems. Broadly speaking, in the infinite-dimensional
case we can find two types of stability- asymptotic stability and exponential sta-
bility - in contrast with the final-dimensional case where these two types are the
same.

We start by studying asymptotic stability and then we give some ideas that can
help to check exponential stability. We mainly focus on the output and scattering
energy preserving systems, since this are the most common (among the class
studied) in applications.

5.1. Asymptotic stability

As mentioned earlier, in this section we provide some tools that facilitate the
analysis of asymptotic stability properties for output and scattering energy
preserving systems. We start with output energy preserving systems (see Sec-
tion 3.4) and show that this class of systems are obtained when static feedback
is used for impedance passive systems. Following this we present some results
which could be useful when dealing with static feedback as well as dynamic
feedback.
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5. Stability and Stabilization

5.1.1. Output energy preserving systems

Recall from Definition 3.18 that output energy preserving systems satisfy the
energy equality (3.11), i.e.,

‖x(t)‖2
X − ‖x0‖2

X = 2

∫ t

0

〈u(τ), y(τ)〉U dτ − 2

∫ t

0

〈αy(τ), y(τ)〉U dτ,

where α is positive semi-definite. Next we show that this class of systems emerge
when static feedback is used on impedance energy preserving systems.

Relation with impedance passive energy preserving systems

-
r u

y
P

Boundary

α

Figure 5.1.: Feedback loop.

Consider the feedback loop of Figure 5.1 where the plant is an impedance energy
preserving system as described in Theorem 2.16. Observe, from the figure, that
we have

u = r − αy, (5.1)

where r, u, y ∈ R
nN and α ≥ 0 is a positive semi-definite matrix. We have that

the plant is described in Theorem 2.14 where W and W̃ satisfy the conditions in
Theorem 2.16. In this case the feedback corresponds to a change in the boundary

114



5.1. Asymptotic stability

conditions, in which the closed-loop system is represented by

ẋ(t) = J x(t)

r(t) = (W + α W̃ )

[
f∂(t)
e∂(t)

]
= (B + α C)x(t)

C x(t) = y(t).

(5.2)

It is easy to check that, in this case, Wnew = (W + α W̃ ) satisfies WnewΣWT
new =

α+ αT , which implies again by Theorem 2.14 that the closed-loop is a boundary
control system since α is positive semi-definite, i.e., α ≥ 0, see [VZL+05b] for
more details. Furthermore, following the same procedure used to prove (2.43)–
(2.44), see [LZM05, p.19], we can show that if x(0) ∈ D(J ), and (B + αC)x(0) =
r(0), the closed-loop system satisfies

1

2

d

dt
‖x(t)‖2

L = 〈r(t), y(t)〉U − 〈αy(t), y(t)〉U . (5.3)

Hence, the closed-loop is output energy preserving. Recall from Theorem 2.16
that the semigroup generator of an impedance energy preserving system is skew-
adjoint, and hence its eigenvalues lie on the imaginary axis. This implies that
these systems are not asymptotically stable, that is why we need feedback to
stabilize them. The next subsection presents some tools that help to check the
stability property of the closed-loop system.

Asymptotic stability of output energy preserving systems

Recall, from Theorems 3.25 and 3.26, that we have related stability with the spec-
trum of the semigroup generator. That is, the system is asymptotically stable if
the semigroup generator does not have eigenvalues on the imaginary axis. We
emphasize that this result holds for the class of systems studied in Section 3.4
under Assumption 2.2. Thus, if we can conclude somehow that the semigroup
operator does not have eigenvalues on the imaginary axis we are done. The next
theorem provides a simple condition to check that.

Theorem 5.1: Consider a BCS as described in Theorem 2.14. Assume it is
output energy preserving, i.e., 1

2
d
dt ‖x(t)‖

2
L = 〈u(t), y(t)〉U − 〈αy(t), y(t)〉U

holds, and that L is a matrix whose entries are real analytic functions. Let
α ∈ R

nN×nN . If the matrix W satisfies

W ΣWT > 0, or equivalently α > 0,

then the system is asymptotically stable and the semigroup generator AL does
not have eigenvalues on the imaginary axis. Furthermore, all statements on
Theorem 3.25 hold.
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5. Stability and Stabilization

Remark 5.2. A similar result (with L = I) was proved in [VZL+05b] by using La
Salle’s invariance principle. ♣

PROOF (PROOF OF THEOREM 5.1): First notice from equation (3.12) that

P−1

W,W̃
=

[
2α I
I 0

]
.

This in turn implies from (2.44) that 2α = W ΣWT (see Remark 3.20) and thus
α > 0 (by the assumption onW ). We know from Theorem 3.25 that we only need
to prove that AL does not have eigenvalues on the imaginary axis. We prove this
by contradiction. Assume that AL has an eigenvalue on the imaginary axis, say
λ0, with corresponding eigenvector φ0 ∈ D(AL). Then, from Remark 2.15 we
can deduce that

0 = Reλ0 〈φ0, φ0〉L = Re 〈AL φ0, φ0〉L = − τ(Lφ0)
TRT

extW̃
Tα W̃Rext τ(Lφ0)︸ ︷︷ ︸

y

,

(5.4)

where we have used equation (3.13) and Definition 2.5. The equation above im-

plies α W̃Rext τ(Lφ0) must be zero. Similarly, since φ0 ∈ D(AL) implies u = 0
(see Remark 2.15) we must have WRext τ(Lφ0) = 0. In summary we have

[
W Rext

α W̃Rext

]
τ(Lφ0) = 0.

Since α,
[

WfW ], and Rext are nonsingular, the condition above implies that (see
Definition 2.5)




(Lφ0)(b)
...

dN−1

dzN−1
(Lφ0)(b)


 and




(Lφ0)(a)
...

dN−1

dzN−1
(Lφ0)(a)


 are equal to zero.

Thus, φ0 is the solution of a PDE with all boundary variables set to zero for all
t ≥ 0. Therefore, we can use, by the assumption on L, Holmgren’s theorem
(see Appendix A for the case L constant and [Joh49] for the general case) to
conclude that φ0 = 0. Clearly this is a contradiction since φ0 was assumed to be
an eigenvector. Hence AL does not have eigenvalues on the imaginary axis.

Corollary 5.3: Consider an impedance energy preserving BCS as described in
Theorem 2.16. Then the feedback u = −αy with α > 0 produces a (closed-
loop) BCS that is output energy preserving, asymptotically stable, and exactly
observable and controllable in infinite time. ♠
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5.1. Asymptotic stability

Example 5.4 Consider an Euler-Bernoulli beam as described in Example 1.2.
This model can be written as a system (2.1) by selecting the state variables

x1 = ∂2w
∂z2 : bending moment,

x2 = ρ∂w
∂t : transverse momentum distribution.

Then the model of the beam can be rewritten as

∂

∂t

[
x1

x2

]
=

[
0 1
−1 0

]
∂2

∂z2

︸ ︷︷ ︸
J

[
EI x1
1
ρ x2

]

︸ ︷︷ ︸
Lx

. (5.5)

From here we can see that the operator J is a second order differential operator
of the form (2.2)–(2.3). It thus follows that n = 2, L = diag{EI, ρ−1} > 0, and P2

is a nonsingular skew-symmetric matrix. The energy of the system is known to
be

E(t) =
1

2

∫ b

a

[
ρ(z)

∣∣∣∣
∂w(z, t)

∂t

∣∣∣∣
2

+ EI(z)

∣∣∣∣
∂2w(z, t)

∂z2

∣∣∣∣
2
]
dz

=
1

2

∫ b

a

[
1

ρ(z)
|x2(z, t)|2 + EI(z)|x1(z, t)|2

]
dz =

1

2
〈Lx, x〉 . (5.6)

In this example L is assumed to satisfy the conditions on Theorem 5.1. Note that,
in this case, we have that the matrix Q appearing in Stokes Theorem 2.1 is given
by (note that P1 = 0)

Q =

[
P1 P2

−P2 0

]
=




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


 . (5.7)

Thus, the port-variables are (recall that ∂z = ∂
∂z )

[
f∂

e∂

]
=Rext




(Lx)(b)
∂(Lx)

∂z (b)
(Lx)(a)
∂(Lx)

∂z (a)


 =

√
2

2




∂z(ρ
−1x2)(b) − ∂z(ρ

−1x2)(a)
−∂z(EIx1)(b) + ∂z(EIx1)(a)
−(ρ−1x2)(b) + (ρ−1x2)(a)
(EIx1)(b) − (EIx1)(a)
(EIx1)(b) + (EIx1)(a)
(ρ−1x2)(b) + (ρ−1x2)(a)

∂z(EIx1)(b) + ∂z(EIx1)(a)
∂z(ρ

−1x2)(b) + ∂z(ρ
−1x2)(a)




. (5.8)

As boundary conditions we set

(ρ−1x2)(a) = −c1∂z(EIx1)(a), ∂z(ρ
−1x2)(a) = c2(EIx1)(a),

(EIx1)(b) = −k1∂z(ρ
−1x2)(b), ∂z(EIx1)(b) = k2(ρ

−1x2)(b),
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5. Stability and Stabilization

where c1, c2, k1 and k2 are positive feedback constants. This corresponds to feed-
back (damping) being used at z = a and z = b. The above boundary conditions
can be obtained from the port-variables by selecting the W matrix

W =
1√
2




0 c1 1 0 0 1 c1 0
−1 0 0 c2 −c2 0 0 1
k1 0 0 1 1 0 0 k1

0 −1 k2 0 0 −k2 1 0


 ,

which satisfies

WΣWT = 2




c1 0 0 0
0 c2 0 0
0 0 k1 0
0 0 0 k2




︸ ︷︷ ︸
α

.

As output we choose

y =




∂z(EIx1)(a)
−(EIx1)(a)
∂z(ρ

−1x2)(b)
−(ρ−1x2)(b)


 , with W̃ =

1√
2




0 1 0 0 0 0 1 0
0 0 0 1 −1 0 0 0
1 0 0 0 0 0 0 1
0 0 1 0 0 −1 0 0


 .

Note that we have selected the variables which are used for feedback. It is now
easy to check that this system is output energy preserving. Furthermore, it is
asymptotically stable since the α > 0, see Theorem 5.1. ∗

5.1.2. Dynamic boundary control of impedance energy
preserving systems

In this subsection we generalize the class of static controllers described in the
previous subsection. More precisely, we replace the static matrix α in Figure 5.1
with a matrix transfer function α(s) where s ∈ C is a complex variable. In this
section we assume that the plant is an impedance energy preserving system, i.e.,

ẋ(t) = JLx(t) (5.9a)

u(t) = B x(t) = W

[
f∂,Lx

e∂,Lx

]
(5.9b)

y(t) = C x(t) = W̃

[
f∂,Lx

e∂,Lx

]
, (5.9c)

where W and W̃ satisfy the conditions on Theorem 2.16.
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The state space representation of the (finite-dimensional) controller is given by

v̇(t) = Aαv(t) +Bαy(t)

yα(t) = Cαv(t) +Dαy(t)
, (5.10)

where v ∈ R
m is the state of the minimal realization. The corresponding transfer

function is denoted by α(s). In this way, equation (5.1) becomes

u = r − yα = r − Cαv −DαC x, (5.11)

where (5.9c) was used. In this sense, the control law above is called a dynamic
boundary control, in contrast to the control law given by (5.1) which describes a
static relation. In this subsection the controller is assumed to be strictly positive
real.

Definition 5.5 (Tao and Ioannou [TI88]). An m×m rational matrix H(s) is said
to be positive real (PR) if: i) all elements of H(s) are analytic in the open right-half
plane Re (s) > 0, ii) poles of any element of H(s) on the jw-axis are distinct, and
the associated residue matrix ofH(s) is ≥ 0, iii)H(jw)+HT (−jw) ≥ 0 ∀w which
is not a pole of any element of H(jw). A rational matrix H(s) is strictly positive
real (SPR) if H(s− ǫ) is positive real (PR) for some ǫ > 0. ♣

Observe that a PR function may have poles on the imaginary axis, whereas all
the poles of SPR functions are in the open left-half plane. The main advantage
of PR or SPR functions is that they enable one to use a Lyapunov function, and
hence to apply Lyapunov stability theory easily. The next lemma is an important
tool in such stability analysis (see [TI88]).

Lemma 5.6 (KYP-Lemma): Assume that the rational transfer matrixH(s) has all
its poles in Re (s) < −γ, where γ > 0 and (A,B,C,D) is a minimal realization
of H(s). Then H(s− γ) is PR if and only if there exist matrices P , Q and K such
that P = PT > 0 and

PA+ATP = −QQT − 2γP ; PB = CT −QK; KTK = D +DT . (5.12)

♥

Next we find the closed-loop system. Let x ∈ X be the state of the plant with X
described by (2.33), v ∈ R

m the state of the controller, and w = [ x
v ]. Using the

feedback control law (5.11) and the fact that u(t) = Bx(t), see (5.9b), we can see
that the closed-loop system is described by

ẇ(t) =

[
JL 0
BαC Aα

]
w(t)

r(t) = (B +Dα C)x(t) + Cαv(t)

y(t) = C x(t)
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or, which can be rewritten,

ẇ(t) = Jc w(t), w(0) ∈ X̃

r(t) =
[
B +Dα C, Cα

]
w(t)

y(t) =
[
C 0

]
w(t),

(5.13)

where X̃ = X × R
m is the state space of the closed-loop system, w = [ x

v ] ∈ X̃ ,

and Jc : X̃ → X̃ is a linear operator defined by

Jc w =

[
JL 0
BαC Aα

] [
x
v

]
with D(Jc) = L−1HN (a, b; Rn) × R

m. (5.14)

The inner product on the space X̃ is defined as

〈w1, w2〉X̃ = 〈x1, x2〉L +
1

2
vT
1 Pv2 +

1

2
vT
2 Pv1, ∀wi =

[
xi

vi

]
∈ X̃, i = {1, 2},

(5.15)
where P is the positive definite matrix found in Lemma 5.6.

Remark 5.7. It is know that the assumption on the controller being SPR is equiv-
alent to being passive, see [ÇHvdSS03]. Also, it is possible to prove that the con-
troller (5.10) can be represented as a finite-dimensional port-Hamiltonian sys-
tem (with dissipation) with energy equal to 1

2v
TPv. In fact, a finite-dimensional

system described by the state space representation (5.10) has the so-called port-
Hamiltonian form

v̇(t) = (J −R)Lv(t) + (G−K) y(t)

yα(t) = (G+K)T Lv(t) + (M + S) y(t),

where J is a skew-symmetric m×m matrix, R is a symmetric m×m matrix, and
L is an m×m matrix with L = LT ≥ 0. The Hamiltonian H(v) (the energy of the
system) is given by H(v) = 1

2v
TLv. See, for instance [ÇHvdSS03]. Furthermore,

G and K are m × n matrices, M is a skew-symmetric n × n matrix and S is a
symmetric n × n matrix. Therefore, we can see the closed-loop system (5.13)
as the interconnection (through the boundary) of an infinite-dimensional port-
Hamiltonian system and a finite-dimensional port-Hamiltonian system. ♣

Next we need to check whether the closed-loop system (5.13) defines again a
boundary control system as described in Definition 1.10.

Theorem 5.8: Let the state of the open-loop system of Figure 5.1 satisfy
1
2

d
dt ‖x(t)‖

2
L = u(t)T y(t) as described in Theorem 2.16 and let the controller
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α(s) be SPR. Then the system described by (5.13) and (5.14) is a boundary con-

trol system on X̃ = X × R
m. Furthermore, the operator Ac defined by

Ac w =

[
JL 0
BαC Aα

] [
x
v

]
(5.16a)

with

D(Ac) =





[
x
v

]
∈
[

X
R

m

] ∣∣∣Lx ∈ HN (a, b; Rn), and



f∂,Lx

e∂,Lx

v


 ∈ ker W̃D



 ,

(5.16b)
where

W̃D =
[

(W +Dα W̃ ), Cα

]
, (5.16c)

generates a contraction semigroup on X̃ .

PROOF: First we need to prove that there exists an operator R ∈ L(U, X̃) such
that for all r ∈ U , Rr ∈ D(Jc) × R

m, and
[
B +Dα C, Cα

]
Rr = r. From the

proof of Theorem 4.5 of [LZM05] (see also the proof of Theorem 2.10 on page 32)

we know that if the matrix W̃D has full rank, then such operator R exists. This
follows by noticing that

(W +Dα W̃ ) = [I, Dα]

[
W

W̃

]
,

where
[

WfW ] is invertible. Hence (W +Dα W̃ ) has full-rank and so does W̃D.

Equations (5.16) follow easily from (5.13). Next we need to prove that Ac gener-
ates a semigroup. We will use the Lümer-Phillips theorem (see [Paz83]). First we

prove that 〈Acw,w〉 ≤ 0. Let w = [ x
v ] ∈ D(Ac), then we have (recall that X̃ is a

real Hilbert space)

〈Acw,w〉X̃ = 〈J Lx, x〉L +
1

2
(Aαv +Bαy)

TPv +
1

2
vTP (Aαv +Bαy)

= 〈J Lx, x〉L +
1

2
vT (AT

αP + PAα)v +
1

2
yTBT

αPv +
1

2
vTPBαy.

From equation (2.39) and Lemma 5.6 we obtain

〈Acw,w〉X̃ =
1

2

[
fT

∂ eT
∂

]
Σ

[
f∂

e∂

]
+

1

2
vT (−QQT − 2γP )v

+
1

2
yT (Cα −KTQT )v +

1

2
vT (CT

α −QK)y.
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Using (2.49) together with (5.9b) and (5.9c) yields

〈Acw,w〉X̃ =
1

2
yTu+

1

2
uT y +

1

2
vT (−QQT − 2γP )v

+
1

2
yT (Cα −KTQT )v +

1

2
vT (CT

α −QK)y.

Since w = [ x
v ] ∈ D(Ac) we have that Cαv = −(W +Dα W̃ )

[
f∂
e∂

]
, see (5.16), and

hence

〈Acw,w〉X̃ =
1

2
yTu+

1

2
uT y +

1

2
vT (−QQT − 2γP )v − 1

2
yT (W +Dα W̃ )

[
f∂
e∂

]

− 1

2
yTKTQT v − 1

2

[
fT

∂ eT
∂

]
(WT + W̃T DT

α )y − 1

2
vTQKy.

Using again (5.9b) and (5.9c) gives, after simplification

〈Acw,w〉X̃ =
1

2
vT (−QQT − 2γP )v − 1

2
yTDαy −

1

2
yTDT

αy

− 1

2
yTKTQT v − 1

2
vTQKy

and using again Lemma 5.6 yields

〈Acw,w〉X̃ = −γ vTPv − 1

2
(Ky +QT v)T (Ky +QT v). (5.17)

Since γ > 0 and P is positive definite it thus follows from the equation above
that 〈Acw,w〉X̃ ≤ 0.

Next we need to prove that the range of (I −Ac) is equal to X̃ . In order to do so,

we can show that for all [ f
z ] ∈

[
X

R
m

]
= X̃ there exists [ x

v ] ∈ D(Ac) such that

[
f
z

]
=

[
(I − JL)x

−BαCx+ (I −Aα)v

]
. (5.18)

Observe that since [ x
v ] ∈ D(Ac) we must have (see (5.16), (5.9b) and (5.9c))

(B +Dα C)x+ Cαv = 0. (5.19)

We need to solve (5.18) and (5.19) for [ f
z ] ∈

[
X

R
m

]
given. Recall that Aα is as-

sumed to have only eigenvalues with negative real part, and hence (I −Aα) is a
nonsingular matrix. Using the lower equation of (5.18) into (5.19) yields

(B +Dα C)x+ Cα(I −Aα)−1z + Cα(I −Aα)−1Bα Cx = 0

⇒(B + α(1) C)x = −Cα(I −Aα)−1z, (5.20)

where α(1) = Cα(I−Aα)−1Bα +Dα. Note that if we find an x that satisfies (5.20)
and the upper equation in (5.18) we will be done. To do so, let x = xnew + R̃z̃
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where R̃ is such that (B + α(1) C) R̃ = I (the existence of R̃ follows from the
surjectivity of (B + α(1) C), see Theorem 2.6 and [LZM04, pp.18-19] for details)
and for simplicity let z̃ = −Cα(I − Aα)−1z. This used in (5.20) and the upper
equation in (5.18) gives

(I − JL)xnew = f − (I − JL)R̃z̃ (5.21)

(B + α(1) C)xnew = 0 ⇒ (W + α(1)W̃ )

[
f∂,Lxnew

e∂,Lxnew

]
= 0. (5.22)

Following Subsection 5.1.1 (see equation (5.2) and the paragraph after that) it is
not difficult to see that if (5.22) holds, then JL with domain
{
xnew ∈ X | Lxnew ∈ HN (a, b)n,

[
f∂,Lxnew

e∂,Lxnew

]
∈ ker(W + α(1)W̃ )

}
(5.23)

generates a contraction semigroup. This implies that (I − JL) has an inverse
and hence xnew exists. Thus, given [ f

z ] ∈
[

X
R

m

]
we can find [ x

v ] ∈ D(Ac) such
that (5.18) and (5.19) holds.

Recall that in the previous section the compactness of the resolvent of the semi-
group generator played an important role in the proof of asymptotic stability of
Theorem 5.1. Next we prove that in the case of dynamic feedback the closed-loop
system still have a compact resolvent, provided that the semigroup generator of
the open-loop system has the same property.

Theorem 5.9: Consider the feedback system of Figure 5.1 where the plant sat-

isfies 1
2

d
dt ‖x(t)‖

2
L = u(t)T y(t) as described in Theorem 2.16 and let the con-

troller α(s) be SPR. Then the operator Ac described in Theorem 5.8 has com-
pact resolvent.

PROOF: Denote by A the operator A = JL with boundary conditions (5.22), i.e.,
with domain (5.23). This clearly has compact resolvent by Theorem 2.28. Below
we prove that (λI −Ac)

−1 is compact for λ = 1, which implies by Theorem 6.29
of [Kat95, Th.6.29, ch3] that (λI −Ac)

−1 is compact for all λ ∈ ρ(Ac).

We apply Theorem 8.1-3 of [Kre89], which states that an operator is compact if
and only if it maps every bounded sequence onto a sequence which has a conver-
gent subsequence. First we find the inverse of (λI − Ac) for λ = 1 by following
the same procedure used to find (5.18)–(5.22). We know that this inverse exists
since Ac generates a contraction semigroup. From (5.21)–(5.22) it is easy to see,

in this case, that xnew ∈ D(A) and xnew = (I − A)−1f − (I − A)−1(I − JL)R̃z̃,
where z̃ = −Cα(I −A)−1z. Since x = xnew + R̃z̃ we obtain that

x = (I −A)−1f − (I −A)−1(I − JL)R̃z̃ + R̃z̃, (5.24)
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and from the lower equation of (5.18) we get

v = (I −Aα)−1BαCx+ (I −Aα)−1z. (5.25)

Thus equations (5.24) and (5.25) describe (I − Ac)
−1, see (5.18). Let {kn} =

{
[

fn
zn

]
} ∈ X̃ = X × R

m be any bounded sequence in X̃ and let wn = [ xn
vn

] ∈
D(Ac) be such that wn = (I − Ac)

−1kn. By Theorem 5.8 we know that Ac

generates a contraction semigroup and by the Hille-Yosida theorem it follows
that

∥∥(λI −Ac)
−1
∥∥ ≤ 1

λ for λ > 0. Hence the sequence {wn} is bounded too.

Since we know that (I − A)−1 is compact and that JLR̃ is bounded (see Defi-
nition 1.10), we have that {xn} has a convergent subsequence, see (5.24). Also,

since {vn} is bounded and belongs to a finite dimensional subspace of X̃ , it fol-
lows that {vn} has another convergent subsequence. Hence, we can conclude
that wn = [ xn

vn
] has a convergent subsequence and therefore (λI −Ac)

−1 is com-
pact for λ = 1 (and hence for all λ ∈ ρ(Ac)).

Next we give an asymptotic stability result.

Theorem 5.10: Consider the feedback system of Figure 5.1 where the plant

satisfies 1
2

d
dt ‖x(t)‖

2
L = u(t)T y(t) as described in Theorem 2.16 with L a ma-

trix whose entries are real analytic functions. Let the controller α(s) be SPR.
Then the system described by (5.13)–(5.14) with r = 0, is globally asymp-

totically stable. That is for any w(0) ∈ X̃ , the unique (classical or weak)
solution w(t) = Tc(t)w(0) of (5.13) asymptotically approaches to zero, i.e.,
limt→∞ ‖w(t)‖X̃ = 0.

PROOF: First we prove this for w(0) ∈ D(Ac). By Theorem 5.8 we know that
Ac generates a contraction semigroup, say Tc. In this case we have that w(t) =
Tc(t)w(0) ∈ D(Ac) for all t ≥ 0, see Theorem 2.1.10 of [CZ95b]. Define the energy
function

Ec(t) =
1

2
‖w(t)‖2

X̃ =
1

2
〈w(t), w(t)〉X̃ . (5.26)

Since w(0) ∈ D(Ac) we have that w(t) is differentiable, see [CZ95b, §2.1]. By
differentiating the equation above and using (5.13) and (5.17) we obtain (recall

that X̃ is a real Hilbert space)

Ėc(t) = 〈ẇ(t), w(t)〉X̃ = 〈Acw(t), w(t)〉X̃
= − γ v(t)TPv(t) − 1

2
(Ky(t) +QT v(t))T (Ky(t) +QT v(t)), (5.27)

where γ > 0 and P is positive definite. Since (λI −Ac)
−1 is compact (see Theo-

rem 5.9) and Tc(t) is a contraction, it follows from LaSalle’s invariance principle
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(see Theorem 3.64 of [LGM99]) that all solutions of (5.13) asymptotically tend to
the maximal invariant set of

Oc = {x̃ ∈ X̃ | Ėc(t) = 0}. (5.28)

Let E be the largest invariant subset of Oc. Next we show that E = {0}. The

condition Ėc(t) = 0 implies, from (5.27), that v(t) = 0; and hence, v̇(t) = 0 as
well. Then by (5.10) we must have that Bαy(t) = 0. Since α(s) is SPR, we have
that α(jw) + αT (−jw) > 0. This implies that if y(t) 6= 0

yT (t)[α(jw) + αT (−jw)]y(t) > 0

⇒ yT (t)[Dα +DT
α ]y(t) > 0

⇒ yT (t)KTK y(t) > 0.

In the second step the facts α(jw) = Cα(jw − Aα)−1Bα + Dα and Bαy(t) = 0
were used, and in the third step we used (5.12). Since v(t) = 0 and KTK > 0 it
follows from (5.27) that y(t) = 0, and hence by (5.10) we also obtain yα(t) = 0.

Therefore from (5.13) and (5.16) it follows that the invariant solution of (5.13) in
Oc reduces to the invariant solution of a PDE with all boundary variables set to
zero. It thus follows from Holmgren’s Theorem, see [Joh49], that x(t) = 0. Hence
the asymptotic stability.

The same statement holds for w(0) ∈ X̃ by using a simple denseness argument,
see [LGM99, p.270].

Remark 5.11. Observe that the proof above is equivalent to prove that the semi-
group generator does not have eigenvalues on the imaginary axis. ♣

Corollary 5.12: Consider the feedback system of Figure 5.1 where the plant sat-

isfies 1
2

d
dt ‖x(t)‖

2
L = u(t)T y(t) as described in Theorem 2.16 and let the controller

α(s) be SPR. If the operator Ac on Theorem 5.8 does not have eigenvalues on the
imaginary axis, then the system described by (5.13)–(5.14) with r = 0, is globally
asymptotically stable. ♠

PROOF: Following Remark 5.11 it is easy to see that if Ac does not have eigenval-
ues on the imaginary axis then the closed-loop is asymptotically stable. Indeed,
in this case we have that Ac has a compact resolvent, see Theorem 5.9, and since
it generates a contraction semigroup, it follows that the conditions on the theo-
rem of Arendt and Batty [AB88] are satisfied.

5.1.3. Scattering energy preserving systems

In this subsection we study the asymptotic stability of the class of scattering en-
ergy preserving systems described in Section 3.3. Here we show that this class
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of systems is always asymptotically stable. In fact, in many situations, this class
is also exponentially stable, see Section 5.2.

Theorem 5.13: Consider a BCS as described in Theorem 2.14. Assume it is
scattering energy preserving, i.e., 1

2
d
dt ‖x(t)‖

2
= ‖u(t)‖2

U − ‖y(t)‖2
U holds (see

Theorem 2.17). Then the system is asymptotically stable and the semigroup
generator AL does not have eigenvalues on the imaginary axis. Furthermore,
all statements on Theorem 3.17 hold.

PROOF: This follows easily by noting that WΣWT = 1
2I (see the proof of The-

orem 2.17). Then by using the same arguments of the proof of Theorem 5.1 the
result follows.

5.2. Exponential stability

In this section we present results that can help to prove whether a system is ex-
ponentially stable. In part of this section we use some of the results presented in
Chapter 4 and hence we mainly deal with the case N = 1, i.e., JL is a first order
differential operator. The proof is based on the following well-known result.

Theorem 5.14: Let T (t) be a uniformly bounded C0-semigroup on a Hilbert
space H with generator A. Then T (t) is exponentially stable if and only if
iR ⊂ ρ(A) and

M0 := sup
w∈R

∥∥(iw −A)−1
∥∥ <∞.

This is a fundamental and well-documented result in the literature on strongly
continuous semigroups. This result is also well known to the control theory
community as the Huang Theorem (see [Hua85]) or the Gearhart-Prüss Theorem
(see [Gea78]).

The following two theorems relate the results presented in Chapter 4 with the
ones of the previous section. They also give more than the exponential stability
itself, they determine further properties of the system.

Theorem 5.15: Consider the operator AL described in (4.10) with L ∈
Mn(W 2,∞(a, b)). Assume that its corresponding eigenvalue problem (4.11)
and (4.13) is normal. If the eigenvalues of AL satisfy

inf
n6=m

|λn − λm| > 0,
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then the system satisfies the spectrum-determined growth condition. In addi-
tion, if iR ⊂ ρ(AL) and the asymptotic expansion of the roots of (4.32) satisfy
Reλ < −δ < 0, with δ a positive constant, then the system (4.8) is exponentially
stable.

PROOF: Since infn6=m |λn − λm| > 0 holds, we have from Corollary 4.28 that
the system has the Riesz basis property, and thus the the spectrum-determined
growth condition is satisfied, see [CZ95b]. By assumption AL does not have
eigenvalues on the imaginary axis and there are no accumulation points on the
imaginary axis at infinity. Thus, the statement on stability follows by using the
spectrum-determined growth condition, see [CZ95b].

From this we immediately obtain the following result.

Theorem 5.16: Consider the operator AL described in (4.10) with L ∈
Mn(W 2,∞(a, b)). Assume that its corresponding eigenvalue problem (4.11)
and (4.13) is normal with eigenvalues satisfying

inf
n6=m

|λn − λm| > 0.

If the asymptotic expansion of the roots of (4.32) satisfy Reλ < −δ < 0, with δ a
positive constant, and the system is asymptotically stable, then the system (4.8)
is exponentially stable.

Some conditions to establish asymptotic stability for this class of systems, which
are easy to check, are given in the previous section.

The following results provide some simple tools to check exponential stability.

Theorem 5.17: Consider a BCS as described in Theorem 2.14 where the skew-
symmetric operator JL is given by (with P1 symmetric and nonsingular)

JLx = P1
d

dz
(Lx)(z) + P0 Lx, (5.29)

with L ∈ Mn

(
L2(a, b)

)
a coercive (multiplication) operator which is differen-

tiable with bounded derivative. If u(t) = 0, for all t ≥ 0, then the energy of the

system E(t) = 1
2 ‖x(t)‖

2
L satisfies for τ large enough

E(τ) ≤ c(τ)

∫ τ

0

‖(Lx)(t, b)‖2
R
dt, and E(τ) ≤ c(τ)

∫ τ

0

‖(Lx)(t, a)‖2
R
dt

(5.30)
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where c is a positive constant that only depends on τ . If, in addition, the energy
of the system (when u(t) = 0, for all t ≥ 0) satisfies

1

2

d

dt
‖x(t)‖2

L = −〈αy(t), y(t)〉U (5.31)

with α positive definite, then the system is exponentially stable.

Remark 5.18. Note that the conditions on Theorem 2.14 have to be satisfied. In
particular, that AL generates a contraction semigroup. ♣

PROOF (PROOF OF THEOREM 5.17): Recall that the energy of the system is given
by

E(t) =
1

2
〈x(t, z),L(z)x(t, z)〉 =

1

2

∫ b

a

xT (t, z)L(z)x(t, z) dz. (5.32)

We start by proving the estimates (5.30). To do so we employ the idea used by
Cox and Zuazua in [CZ95a]. We define the (positive) function

F (z) =

∫ τ−γ(b−z)

γ(b−z)

xT (t, z)L(z)x(t, z) dt, (5.33)

where γ > 0, τ > 2γ(b− a), and 0 ≤ t ≤ τ . It thus follows that

F ′(z) =

∫ τ−γ(b−z)

γ(b−z)

(
∂

∂z
x(t, z)

)T

L(z)x(t, z) dt

+

∫ τ−γ(b−z)

γ(b−z)

xT (t, z)
∂

∂z
(L(z)x(t, z)) dt+ γxT (γ(b− z), z)L(z)x(γ(b− z), z)

+ γxT (τ − γ(b− z), z)L(z)x(τ − γ(b− z), z).

Since P1 is nonsingular and ∂x
∂t = P1

dLx
dz + P0Lx we obtain (for simplicity we

omit the dependence on z and t)

F ′(z) =

∫ τ−γ(b−z)

γ(b−z)

[
L−1

(
P−1

1

∂x

∂t
− L′x− P−1

1 P0Lx
)]T

Lx dt

+

∫ τ−γ(b−z)

γ(b−z)

xTP−1
1

(
∂x

∂t
− P0Lx

)
dt+ γxT (γ(b− z), z)L(z)x(γ(b− z), z)

+ γxT (τ − γ(b− z), z)L(z)x(τ − γ(b− z), z)
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= xT (t, z)P−1
1 x(t, z)

∣∣t=τ−γ(b−z)

t=γ(b−z)
−
∫ τ−γ(b−z)

γ(b−z)

xT
(
LPT

0 P
−1
1 + P−1

1 P0L
)
x dt

−
∫ τ−γ(b−z)

γ(b−z)

xTL′ x dt+ γxT (τ − γ(b− z), z)L(z)x(τ − γ(b− z), z)

+ γxT (γ(b− z), z)L(z)x(γ(b− z), z),

where we used PT
1 = P1, LT = L. By simplifying the equation above one obtains

F ′(z) = −
∫ τ−γ(b−z)

γ(b−z)

xTL′ x dt−
∫ τ−γ(b−z)

γ(b−z)

xT
(
LPT

0 P
−1
1 + P−1

1 P0L
)
x dt

+ xT (τ − γ(b− z), z)
[
P−1

1 + γL(z)
]
x(τ − γ(b− z), z)

+ xT (γ(b− z), z)
[
−P−1

1 + γL(z)
]
L(z)x(γ(b− z), z).

By choosing γ large enough, i.e., by choosing τ large, we get that P−1
1 + γL and

−P−1
1 + γL are positive definite. This in turn implies that (for τ large enough)

F ′(z) ≥ −
∫ τ−γ(b−z)

γ(b−z)

xTL′ x dt−
∫ τ−γ(b−z)

γ(b−z)

xT
(
LPT

0 P
−1
1 + P−1

1 P0L
)
x dt.

Since P1 and P0 are constant matrices and, by assumption, L′(z) is bounded, i.e.,
xTL′(z)x ≤ c xTL(z)x, we get

F ′(z) ≥ −κ
∫ τ−γ(b−z)

γ(b−z)

xT (t, z)L(z)x(t, z) dt = −κF (z),

where κ is a positive constant and we used (5.33). Thus we have F ′(z)
F (z) ≥ −κ,

which in turn implies (for τ large enough)
∫ z2

z1

F ′(z)

F (z)
dz ≥ −κ

∫ z2

z1

dz, for z2 ≥ z1,

⇒ ln
(
F (z2)

)
− ln

(
F (z1)

)
≥ −κ (z2 − z1)

⇒ F (z2) ≥ F (z1) e−κ (z2−z1)

⇒ F (b) ≥ F (z) e−κ (b−a) for z ∈ [a, b]. (5.34)

Since we have that E(t2) ≤ E(t1) for any t2 ≥ t1 (by the contraction property of
the semigroup), we deduce that

∫ τ−γ(b−a)

γ(b−a)

E(t) dt ≥ E(τ − γ(b− a))

∫ τ−γ(b−a)

γ(b−a)

dt

= (τ − 2γ(b− a))E(τ − γ(b− a)).
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Using the definition of F (z) and E(t), see (5.33) and (5.32), together with the
equation above as well as the estimate (5.34), and the coercivity of L we obtain
(for τ large enough)

2(τ−2γ(b− a))E(τ) ≤ 2(τ − 2γ(b− a))E(τ − γ(b− a))

≤
∫ b

a

∫ τ−γ(b−a)

γ(b−a)

xT (t, z)Lx(t, z) dt dz

=

∫ b

a

F (z) dz ≤ (b− a)F (b) eκ (b−a) = (b− a) eκ (b−a)

∫ τ

0

xT (t, b)Lx(t, b) dt

≤ c1

∫ τ

0

‖(Lx)(t, b)‖2
R
dt,

where c1 = (b− a)
∥∥L−1(b)

∥∥ eκ (b−a). This means that for τ large enough

E(τ) ≤ c2(τ)

∫ τ

0

‖(Lx)(t, b)‖2
R
dt, c2 =

(b− a)
∥∥L−1(b)

∥∥
2(τ − 2γ(b− a))

eκ (b−a). (5.35)

This proves the first estimate on (5.30). The other estimate follows by replacing
F (z) in the argument above by

F̃ (z) =

∫ τ−γ(z−a)

γ(z−a)

xT (t, z)L(z)x(t, z) dt.

Next we prove the exponential stability. If u(t) = 0, then we know by assump-
tion, see (5.31), that the energy satisfies for some τ > 0

E(0) − E(τ) =

∫ τ

0

〈αy(t), y(t)〉U dt.

Now, observe that it is sufficient to prove the existence of some time τ > 0 and
some constant c0 > 0 such that

E(τ) ≤ c0

∫ τ

0

〈αy(t), y(t)〉U dt (5.36)

for all solutions of the system. Indeed, combining the two equations above we
get

E(τ) ≤ c0
1 + c0

E(0).

From this we see that the semigroup T (t) generated by AL satisfies ‖T (t)‖ < 1,
from which we obtain exponential stability.

In order to find the estimate (5.36) we need to find a relation between
∥∥L−1(b)

∥∥
R

(or
∥∥L−1(a)

∥∥
R

) and ‖y(t)‖
R

. To do so, observe from Theorem 2.14 that (since
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5.2. Exponential stability

u(t) = 0)

[
0
y

]
=

[
W

W̃

]
Rext

︸ ︷︷ ︸
M

[
(Lx)(b)
(Lx)(a)

]
.

Since
[

WfW ] and Rext are nonsingular it follows that M is invertible and, in partic-

ular, ‖M w‖2
R
≥ ε ‖w‖2

R
. Taking norms on both sides yields

‖y‖2
R =

∥∥∥∥M
[

(Lx)(b)
(Lx)(a)

]∥∥∥∥
2

R

≥ ε

∥∥∥∥
[

(Lx)(b)
(Lx)(a)

]∥∥∥∥
2

R

≥ ε ‖(Lx)(b)‖2
R

⇒ ‖(Lx)(b)‖2
R
≤ ε−1 ‖y‖2

R
.

This together with (5.35) and the coercivity of α gives the estimate (5.36). Hence,
the system is exponentially stable.

The estimates (5.30) can be used to prove exponential stability in some cases
when α is positive semi-definite, as the following corollary and examples show.

Corollary 5.19: Consider a BCS as described in Theorem 2.14 where the operator
JL is given by (with P1 symmetric and nonsingular)

JLx = P1
d

dz
(Lx)(z) + P0 Lx, (5.37)

with1 L ∈Mn

(
L2(a, b)

)
a coercive operator which is differentiable with bounded

derivative. Assume that the energy of the system when u(t) = 0 for all t ≥ 0,
satisfies

1

2

d

dt
‖x(t)‖2

L = −〈αy(t), y(t)〉U ,

where α is a positive semi-definite matrix, i.e., α ≥ 0. Then the system is expo-
nentially stable if

either ‖(Lx)(b)‖2
R
≤ k1 〈α y, y〉U or ‖(Lx)(a)‖2

R
≤ k1 〈αy, y〉U (5.38)

holds where k1 is a positive constant. ♠

PROOF: It follows easily from the proof of Theorem 5.17. Indeed, by using the
condition (5.38) in (5.30) we obtain the estimate (5.36).

Remark 5.20. Note that in the proof of Theorem 5.17 only the properties of P1

were used and not of P0. Thus, Theorem 5.17 and Corollary 5.19 also hold
for any P0 provided that L is coercive and the semigroup generated by AL =
P1

d
dz (Lx)(z) + P0 Lx is a contraction. ♣

1Note that the condition L ∈ Mn

�
L2(a, b)

�
implies that L is a multiplication operator.
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Example 5.21 Consider the wave equation of Example 4.14, which can be mod-
eled by

∂

∂t

[
p
q

]

︸ ︷︷ ︸
x

=

[
0 1
1 0

]
∂

∂z

[ 1
ρp

Tq

]
, t ≥ 0, (5.39)

T (a) q(a, t) = 0,
1

ρ(b)
p(b, t) + α1T (b) q(b, t) = 0, (5.40)

where z ∈ [a, b]. Here T (z) and ρ(z) are positive smooth functions and α1 > 0 is a
constant feedback gain. We want to prove that the system is exponentially stable
under this boundary conditions.

The port-variables are given in equation (4.37) where e =
[ ep

eq

]
=
[

1
ρ p

Tq

]
. To the

boundary conditions there correspond a W matrix given by

W =
1√
2

[
−1 0 0 1
α1 1 1 α1

]
⇒ WΣWT = 2

[
0 0
0 α1

]

︸ ︷︷ ︸
α

. (5.41)

As output we select the variables

y =

[ 1
ρ(a)p(a, t)

T (b) q(b, t)

]
, with W̃ =

1√
2

[
0 1 −1 0
1 0 0 1

]
.

Then, it is easy to show, see Theorem 2.14, that the system satisfies (output en-
ergy preserving)

1

2

d

dt
‖x(t)‖2

L = −〈αy(t), y(t)〉U = −α1 |(Tq)(b)|2,

since u(t) = 0 for all t ≥ 0, see (5.40). Note that the matrix α is not coercive,
see (5.41), so we cannot use Theorem 5.17. However, we still can use Corol-
lary 5.19. In this case, by using (5.40), we have

‖(Lx)(b)‖2
R

= |(ρ−1p)(b)|2 + |(Tq)(b)|2 = (α2
1 + 1)|(Tq)(b)|2.

From this we clearly have (5.38) since 〈α y, y〉U = α1 |(Tq)(b)|2. From this and
Corollary 5.19 we can conclude that this system is exponentially stable (by the
smoothness of L, i.e., of T (z) and ρ(z)). Since in this case, the system is out-
put energy preserving we also have that the systems is exactly controllable and
observable, see Theorem 3.24. ∗

Example 5.22 We consider again the Timoshenko beam, whose model together
with the port-variables are described in Example 2.19 on page 42. Here we im-
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5.2. Exponential stability

pose the boundary conditions used in Example 3.27 on page 81, i.e.,

1

ρ(a)
x2(a, t) = 0,

1

Iρ(a)
x4(a, t) = 0, t ≥ 0,

K(b)x1(b, t) = −α1
1

ρ(b)
x2(b, t), EI(b)x3(b, t) = −α2

1

Iρ(b)
x4(b, t), (5.42)

where α1 and α2 are given positive gain feedback constants. Under this bound-
ary conditions, i.e., u(t) = 0, the system satisfy the energy inequality (see Exam-
ple 3.27 for details)

1

2

d

dt
‖x(t)‖2

L = −〈αy(t), y(t)〉U = −
(
α1 |(ρ−1 x2)(b, t)|2 + α2 |(I−1

ρ x4)(b, t)|2
)

︸ ︷︷ ︸
〈αy,y〉U

.

(5.43)

(Recall that U = R
4.) We prove that this system is exponentially stable, and we

do this by using Corollary 5.19. Using the boundary conditions (5.42) we obtain

‖(Lx)(b)‖2
R

= |(kx1)(b)|2 + |(ρ−1x2)(b)|2 + |(EIx3)(b)|2 + |(I−1
ρ x4)(b)|2

= (α2
1 + 1)|(ρ−1x2)(b)|2 + (α2

2 + 1)|(I−1
ρ x4)(b)|2

≤ κ 〈αy, y〉
R

for some positive κ,

where we used (5.43). Provided that K(z), ρ(z), EI(z), and Iρ(z) are continu-
ously differentiable, we can conclude from Corollary 5.19 that the system is ex-
ponentially stable. Note that if either α1 or α2 is set to zero, we cannot conclude
(from Corollary 5.19) anymore that the system is exponentially stable. ∗
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Chapter 6

Systems with Dissipation

In Chapters 2 and 3 we have studied systems where the dissipation phenomena
has been neglected. Recall that in Section 1.4 we mentioned that we would study
a specific class of systems which might include dissipation, see equation (1.23).
In this chapter we deal with a larger class of systems to those studied in Chap-
ter 2 and we extend the results presented in that chapter to include this larger
class. However, the results presented in Chapter 2 are fundamental, since the
extended results depend on the results presented there. In brief, the class of sys-
tems studied in this chapter is

∂x

∂t
(t, z) = (J − GRSG∗

R)Lx(t, z), x(0, z) = x0(z), (6.1a)

u(t) = BLx(t, z), z ∈ (a, b), t ≥ 0 (6.1b)

y(t) = CLx(t, z), (6.1c)

where B and C are boundary operators and S and L are bounded coercive opera-
tors on L2(a, b; R

m) andX = L2(a, b; R
n), respectively. The differential operators

J and GR are given by

J x =
N∑

i=0

Pi
∂ix

∂zi
, GRx =

N∑

i=0

Gi
∂ix

∂zi
, G∗

Rx =
N∑

i=0

(−1)iGT
i

∂ix

∂zi
, (6.2)

with G∗
R being the formal adjoint operator of GR and Gi, Pi, i = {1, 2, . . . , N}, are

constant real matrices of size n ×m, and n × n, respectively. Furthermore, it is
assumed that these matrices satisfy

Pi = (−1)i+1PT
i , i = 0, 1, . . . , N, (6.3)
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6. Systems with Dissipation

and either of the following conditions

[
PN GN

GT
N 0

]
has full rank, if Gi 6= 0 for at least one i ∈ {1, 2, . . . , N};(6.4a)

or

PN has full rank, if Gi = 0 for all i ≥ 1, i.e., if GR = G0 . (6.4b)

It is worth to mention that the conditions above are not strong. In fact, many
physical examples which occur in applications satisfy the conditions above. For
instance, the heat equation satisfies condition (6.4a) and the wave equation with
viscous damping satisfies (6.4b). Moreover, conditions (6.4a)–(6.4b) guarantee
that we are imposing the appropriate number of boundary conditions. However,
there are some cases in which the conditions above are not satisfied, e.g. when
structural damping is used. Later we introduce some results which allow us to
cover those cases as well.

Observe that Sturm-Liouville systems are a special class of this type of equations,
choose n = m = 1. For more general n and m this class includes diffusion
equations with control and observation through the boundary as well as flexible
structures with damping. See Chapter 1 for more examples.

As we did in Chapter 2, in this chapter we also explain how to select the bound-
ary operators B and C such that the system (6.1) is a boundary control system in
the sense of Section 1.5. Furthermore, with this selection of B and C the system is
dissipative as explained in Section 1.8. We also show that the selection of these
boundary operators is based on the choice of a matrix, which in turn simplifies
the analysis and design of this class of boundary control systems. Also, the re-
lation with port-Hamiltonian systems (PHS) is studied, as well as the respective
Dirac structure. We start describing the properties related to the skew-symmetric
operator that describes the Dirac structure. These properties correspond to at-
tributes coming from the internal interconnection of the elements that comprise
the system. We also define the port-variables, which are the variables that the
system uses to interact with the environment. In particular, we define the bound-
ary port-variables. Finally, recall from Chapter 1 that a self-adjoint operator, L,
is coercive if there exists an ε > 0 such that

〈Lx, x〉 = 〈x,Lx〉 ≥ ε ‖x‖2
> 0 for all x ∈ D(L), (6.5)

i.e., L has a bounded inverse.

6.1. Relation with skew-symmetric operators

In this section we show that there is a skew-symmetric operator which is related
to the class of systems described by (6.1). The idea of making this relation is that
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6.2. Port-variables for skew-symmetric operators and BCS related to Je

systems described by skew-symmetric operators have been studied extensively
in the literature. In particular, we use the results presented in Chapter 2. Further-
more, this skew-symmetric operator describes the interconnection properties of
the system.

The relation is as follows. Consider the operator given by

Je =

[
J GR

−G∗
R 0

]
, D(Je) = HN (a, b,Rn) ×HN (a, b,Rm), (6.6)

where J , GR, and G∗
R are given in (6.2). Note that if we define
[
f
fr

]
= Je

[
e
er

]
=

[
J GR

−G∗
R 0

] [
e
er

]

and let er = Sfr with S an (coercive) operator on L2(a, b; R
m), then we obtain

f = J e− GRSG∗
Re,

which is the same operator that appears in (6.1) with e = Lx. This idea has
been used before to deal with dissipation in the framework of port-Hamiltonian
systems, see for instance [vdSM02] and [MvdSM04]. Roughly speaking, GR ex-
presses how dissipation comes into the system, S describes the amount of dissi-
pation in the system, and Je gives the internal geometric properties of the sys-
tem (6.1).

Basically, the operator Je can be seen as the skew-symmetric operator describing
the Dirac structure corresponding to system (6.1), see Theorem 2.7. In this case
the Dirac structure will have an additional port (called the resistive port) with
respect to the Dirac structure studied in Chapter 2, see Chapter 7 for more de-
tails. In order to define the dynamics of the (port-Hamiltonian) system we need
to terminate this resistive port with a resistive relation as described above, see
Figure 6.1.

The operator Je plays a crucial role in the rest of this chapter. In the next section
we show that the operator Je is skew-symmetric. Furthermore, we also adapt
the results appearing in Chapter 2 (or in [LZM05] and [LZM04]) to fit the oper-
ator Je taking into account conditions (6.3), (6.4a), and (6.4b). That is, we adapt
Theorem 2.1 to include conditions (6.3), (6.4a), and (6.4b).

6.2. Port-variables for skew-symmetric operators and
boundary control systems related to Je

In this section we study the operator Je introduced at the end of the previous
section, i.e.,

Je =

[
J GR

−G∗
R 0

]
, D(Je) = HN (a, b,Rn) ×HN (a, b,Rm), (6.7)
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f∂

e∂

erfr

e

f

Hamiltonian - H

S

DJe

Figure 6.1.: Interconnection structure with resistive port.

where J , GR, and G∗
R are given in (6.2). Furthermore these operators satisfy (6.3)

and either (6.4a) or (6.4b). Note that assumption (6.3) imposed on the matri-
ces Pi means that J is formally skew symmetric. Also, the validity of assump-
tion (6.4a) means that GR is a differential operator whose leading (matrix) coeffi-
cient, GN , has full-rank. Condition (6.4b) implies that GR is a bounded operator,
i.e., GR = G0, in which case we need the leading matrix PN appearing in J to be
nonsingular.

First, we prove that the operator Je is formally skew-symmetric, which will al-
lows us to use the results presented in Chapter 2.

Proposition 6.1: The operator Je defined by (6.7) together with (6.2) and (6.3) is
formally skew-symmetric and can be written as:

Je

[
e
er

]
=

N∑

i=0

[
Pi Gi

(−1)(i+1)GT
i 0

]

︸ ︷︷ ︸ePi

∂i

∂zi

[
e
er

]
(6.8)

where P̃i ∈ R
(n+m)×(n+m) satisfies

P̃i =

[
Pi Gi

(−1)(i+1)GT
i 0

]
= (−1)i+1

[
Pi Gi

(−1)i+1GT
i 0

]T

= (−1)i+1P̃T
i .

(6.9)

♥
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6.2. Port-variables for skew-symmetric operators and BCS related to Je

PROOF: That Je is formally skew-symmetric follows from the fact that J is for-
mally skew-symmetric and G∗

R is the formal adjoint of GR. In fact, using this one
obtains

〈
Jex

1, x2
〉

=

〈[
J GR

−G∗
R 0

] [
x1

1

x1
2

]
,

[
x2

1

x2
2

]〉

=
〈
J x1

1 + GRx
1
2, x

2
1

〉
+
〈
−G∗

Rx
1
1, x

2
2

〉

=
〈
x1

1,−J x2
1

〉
+
〈
x1

2,G∗
Rx

2
1

〉
+
〈
x1

1,−GRx
2
2

〉

=

〈[
x1

1

x1
2

]
,−
[

J GR

−G∗
R 0

] [
x2

1

x2
2

]〉

=
〈
x1,−Jex

2
〉
.

Using (6.2) into (6.7) we can see that Je can be rewritten as

Je

[
e
er

]
=

N∑

i=0

[
Pi Gi

−(−1)iGT
i 0

]
∂i

∂zi

[
e
er

]

=
N∑

i=0

[
Pi Gi

(−1)(i+1)GT
i 0

]
∂i

∂zi

[
e
er

]
.

Equation (6.9) follows easily from the definition of P̃i and (6.3).

Recall from Chapter 2 that we have parameterized the boundary conditions for
which a formally skew-symmetric operator generates a contraction semigroup.
We use those results to prove a similar result for the class of systems described
by (6.1). First, we need to adapt conditions (6.4a) and (6.4b) imposed on the
operator Je to match the conditions that are used for the selection of the port-
variables and the bilinear form (2.14). There, it was assumed that the leading

coefficient matrix of the skew-symmetric operator, i.e., P̃N , was nonsingular, see
Assumption 2.2 on page 25. This guarantees that the relation between the change
of energy inside the spatial domain and the energy flowing through the bound-
ary defines a nondegenerate bilinear form, see theorem below or Sections 2.1
and 2.2. This bilinear form is essential in the definition of the Dirac structure and
of the boundary control systems which are obtained from this Dirac structure as
it was seen in Chapter 2.

Since conditions (6.4a) and (6.4b) change the nonsingularity of P̃N , we need to
redefine Theorem 2.1.

Theorem 6.2: Let Je be the skew symmetric operator defined by (6.7) together
with (6.2) and (6.3). For any two functions ee,i =

[ e1,i
ep,i

]
∈ D(Je), i ∈ {1, 2} we

have:
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a. If condition (6.4a) is satisfied then the following equation holds

∫ b

a

eT
e,1(z)(Jeee,2)(z) + eT

e,2(z)(Jeee,1)(z)dz = (6.10)



(
eT
e,1(z), · · · dN−1eT

e,1

dzN−1 (z)

)
Q




ee,2(z)
...

dN−1ee,2

dzN−1 (z)







b

a

,

whereQ is an (n+m)N×(n+m)N nonsingular symmetric matrix defined
by

Q =




P̃1 P̃2 P̃3 · · · P̃N−1 P̃N

−P̃2 −P̃3 −P̃4 · · · −P̃N 0
...

. . .
. . .

. . .
...

(−1)N−1P̃N 0 · · · · · · 0


 , (6.11)

with P̃i given in (6.9).

b. If condition (6.4b) is satisfied then the following equation holds

∫ b

a

eT
e,1(z)(Jeee,2)(z) + eT

e,2(z)(Jeee,1)(z)dz = (6.12)



(
eT
1,1(z), · · · dN−1eT

1,1

dzN−1 (z)

)
Q




e1,2(z)
...

dN−1e1,2

dzN−1 (z)







b

a

,

where Q is an nN × nN nonsingular symmetric matrix defined by

Q =




P1 P2 P3 · · · PN−1 PN

−P2 −P3 −P4 · · · −PN 0
...

. . .
. . .

. . .
...

(−1)N−1PN 0 · · · · · · 0


 , (6.13)

with Pi given in (6.2) and (6.3).

PROOF: In Theorem 2.1 a similar result is proved for any skew-symmetric oper-
ator with nonsingular leading coefficient matrix. This is proved by using inte-
gration by parts iteratively, see [LZM04, Theorem 3.1]. Here we use that result.

a. Assuming that condition (6.4a) is satisfied, we see that P̃N is nonsingular.

140



6.2. Port-variables for skew-symmetric operators and BCS related to Je

Hence the conditions on Theorem 2.1 are satisfied, and from there the result
follows.

b. We prove the result in the case Gi = 0 for all i ≥ 0, or which is equivalent,
when GR = G0, see (6.4b). In that case, we have

∫ b

a

eT
e,1(z)(Jeee,2)(z) + eT

e,2(z)(Jeee,1)(z)dz

=

∫ b

a

[
e1,1

ep,1

]T [ J GR

−G∗
R 0

] [
e1,2

ep,2

]

= +

[
e1,2

ep,2

]T [ J GR

−G∗
R 0

] [
e1,1

ep,1

]
dz.

After simplifying we obtain

∫ b

a

eT
e,1(z)(Jeee,2)(z) + eT

e,2(z)(Jeee,1)(z)dz =

∫ b

a

eT
1,1(J e1,2 +G0ep,2) dz

+

∫ b

a

eT
p,1(−GT

0 e1,2) + eT
1,2(J e1,1 +G0ep,1) + eT

p,2(−GT
0 e1,1) dz.

Since eT
1,1G0ep,2 = eT

p,2G
T
0 e1,1 and eT

1,2G0ep,1 = eT
p,1G

T
0 e1,2, the equation

above becomes
∫ b

a

eT
e,1(z)(Jeee,2)(z) + eT

e,2(z)(Jeee,1)(z)dz

=

∫ b

a

eT
1,1(J e1,2) + eT

1,2(J e1,1) dz.

Hence, we have changed the relation on the extended skew-symmetric op-
erator Je to the skew-symmetric operator J with a nonsingular leading
coefficient matrix PN . Then, we can apply again Theorem 2.1 to J to ob-
tain the result with the new Q matrix.

Remark 6.3. Theorem 6.2 can be considered as an extension of Stokes Theorem
to a class of skew-symmetric operators. Note that it induces a symmetric pairing
on the boundary variables. Also, observe that the dimension of the symmetric
matrix Q, and hence the dimension of the vector containing the boundary vari-
ables, changes according to condition (6.4a) or (6.4b). This is due to the fact that
if GR = G0, i.e., GR is a bounded operator, it does not add boundary variables
in the integration by parts (the part corresponding to ep,i does not appear on
the right hand side of (6.12)). Obviously, if GR is a differential operator, then the
part corresponding to ep,i will appear in the boundary variables as can be seen
on (6.10). It is worth to mention that once the operator GR is chosen, then the
matrix Q is fixed. ♣
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6. Systems with Dissipation

Following the theorem above, it is easy to see that the results of Chapter 2 apply
to the operator Je. That is why the remaining of this section is dedicated to rec-
ollect and adapt to Je some of the contents that appear in that chapter. All those
results are needed in the next section to prove the main ideas of this chapter.

6.2.1. Definition of boundary port-variables

Recall from Section 2.1 that in order to define the boundary port-variables it was
necessary to introduce some new matrices, i.e., Rext and Σ, see Lemma 2.4. It
is clear that those matrices depend on Q (and its dimension). Following The-
orem 6.2 it is easy to see that Lemma 2.4 still holds for the operator Je once
the matrix Q has been described. The only thing that changes is the dimension
of Rext and Σ accordingly to the dimension of the matrix Q, see Theorem 6.2.
Therefore, the selection of the boundary port-variables follows easily once this
dimension has been set.

Definition 6.4. The boundary port-variables associated with the differential oper-
ator Je of Theorem 6.2 are the vectors e∂ , f∂ defined as follows.

a. If condition (6.4a) is satisfied then
[
f∂,ee

e∂,ee

]
= Rextτ

([
e1
er

])
, (6.14)

where Rext ∈ R
2(n+m)N×2(n+m)N is defined according to Lemma 2.4 and

ee = [ e1
er

] is defined according to Theorem 6.2. Furthermore, e∂ , f∂ ∈
R

(n+m)N and the boundary trace operator τ : HN (a, b; Rn+m) → R
2(n+m)N

is described in Definition 2.5.

b. If condition (6.4b) is satisfied then
[
f∂,ee

e∂,ee

]
= Rextτ(e1) =

[
f∂,e1

e∂,e1

]
, (6.15)

where Rext ∈ R
2nN×2nN is defined according to Lemma 2.4 and ee = [ e1

er
]

is defined according to Theorem 6.2. Furthermore, e∂ , f∂ ∈ R
nN and the

boundary trace operator τ : HN (a, b; Rn) → R
2nN is described in Defini-

tion 2.5. ♣

Since we have defined the boundary ports corresponding to the skew-symmetric
operator Je it follows easily that the bilinear form used to define the Dirac struc-
ture is still described by (2.14) with F = E = L2(a, b; R

n+m)× (dimension of
f∂), where the only difference is the dimension of the port-variables, which may
change with respect to that of Section 2.2. However, we stress that this dimen-
sion is fixed once we define the operator Je (and hence Q). Therefore, all the
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6.2. Port-variables for skew-symmetric operators and BCS related to Je

results in Sections 2.2 and 2.3 are valid for the operator Je. In particular, the
Dirac structure is still described as in Theorem 2.7, which adapted to this case
becomes

Theorem 6.5: Consider the skew-symmetric operator Je given by (6.7) to-
gether with (6.2) and (6.3). Let the boundary port-variables be described as
in Definition 6.4. Then, the subspace DJe

of B defined by

DJe
=








f
f∂

e
e∂


 ∈ B

∣∣∣∣ e ∈ D(Je), J e = f,

[
f∂,e

e∂,e

]
= Rext τ(e)





(6.16)

is a Dirac structure, where Rext and τ(·) are given according to Definition 6.4.

6.2.2. Definition of a class of boundary control systems related
to Je

In the previous subsection we defined the boundary port-variables and the Dirac
structure which are related to the extended operator Je. We also concluded that
the results of Section 2.3 are also valid for Je based on the modified Stokes Theo-
rem (Theorem 6.2) and the redefined boundary port-variables, i.e., Definition 6.4.
In particular, in this subsection we rewrite Theorem 2.14 adapted to the skew-
symmetric operator Je under assumption (6.4a) or (6.4b).

In other words, in this subsection we consider systems described by the follow-
ing PDE

∂x

∂t
(t) = JeL̃x(t),

where L̃ =
[ L1 0

0 L2

]
is a coercive operator on the state space defined by

X̃ = L2(a, b)
n × L2(a, b)

m with inner product

〈x1, x2〉L̃ = 〈u1,L1u2〉 + 〈w1,L2w2〉 for any xi = [ ui
wi

] ∈ X̃ , i={1,2},

and corresponding norm ‖x1‖2
L̃ = 〈x1, x1〉L̃,

(6.17)

where 〈·, ·〉 is the natural L2-inner product. As previously mentioned, the idea
is to define systems with inputs and outputs acting through the boundary of the
spatial domain. The following theorem, which is an adaptation of Theorem 2.14,
characterizes those inputs and outputs for which the system is energy preserv-
ing.
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6. Systems with Dissipation

Theorem 6.6: Let k be the dimension of f∂ and e∂ according to Definition 6.4,
i.e., k = (n + m)N or k = nN , and let W be a k × 2k matrix. If W has full
rank and satisfies WΣWT ≥ 0, where Σ is defined in (2.9), then the following

system, with L̃ =
[ L1 0

0 I

]
,

∂x

∂t
(t) = JeL̃x(t), or equivalently

(
ẋ(t), f∂,L̃x(t), L̃x(t), e∂,L̃x(t)

)
∈ DJe

defined on the state space X̃ (see (6.17)) with input

u(t) = W

[
f∂,L̃x(t)

e∂,L̃x(t)

]

is a boundary control system on X̃ . Furthermore, the operator Aext = JeL̃
with domain

D(Aext) =

{
x̃ =

[
x
xr

]
∈ X̃

∣∣∣ L̃x̃ ∈
[
HN (a, b; Rn)
HN (a, b; Rm)

]
and

[
f∂,L̃x̃

e∂,L̃x̃

]
∈ kerW

}

(6.18)
generates a contraction semigroup on X̃ .

Let W̃ be a full rank matrix of size k × 2k with
[

WfW ] invertible. If we define the

linear mapping C : L̃−1
(
HN (a, b; Rn) ×HN (a, b; Rm)

)
→ R

k as,

Cx(t) := W̃

[
f∂,L̃x(t)

e∂,L̃x(t)

]
(6.19)

and the output as
y(t) = Cx(t), (6.20)

then for u ∈ C2(0,∞; Rk), L̃x(0) ∈ HN (a, b; Rn) ×HN (a, b; Rm), and Bx(0) =
u(0) the following balance equation is satisfied:

1

2

d

dt
‖x(t)‖2

L̃ =
1

2

(
uT (t) yT (t)

)
PW,W̃

(
u(t)
y(t)

)
, (6.21)

where

P−1

W,W̃
=

[
WΣWT WΣW̃T

W̃ΣWT W̃ΣW̃T

]
. (6.22)

Furthermore, we have that the matrix
(

WΣW T WΣfW TfWΣW T fWΣfW T

)
is invertible if and only

if
[

WfW ] is invertible.
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6.3. Port-variables and BCS for systems with dissipation

Observe that the input and output of this class of distributed parameter sys-
tems is acting through the boundary of the spatial domain. Also this input and
output are parameterized by the selection of a matrix. Furthermore, the rate of
change of the energy of the system is a linear combination of the input and out-
put, see (6.21). This makes it easy to define impedance passive and scattering
passive systems. For more information on this class of systems refer to Chap-
ter 2.

6.3. Port-variables and BCS for systems with
dissipation

Now we turn to systems described by (6.1) where it is assumed that (6.3) holds
together with either (6.4a) or (6.4b). Recall that the state space X is defined

in (2.33) (note that it is different from X̃).

Before stating the main result, we stress that if we define

[
f
fr

]
= Je

[
e
er

]
=

[
J GR

−G∗
R 0

] [
e
er

]

and let er = Sfr = −SG∗
Re with S a coercive operator, we obtain

f = J e− GRSG∗
Re,

which is the same operator that defines our class of systems, see Section 6.1. As
mentioned earlier, this idea of feedback will be used to prove the main results
of this paper. First we introduce again the notion of boundary port-variables
adapted to the class of systems described by (6.1). Then we proceed to prove the
main results.

6.3.1. Boundary port-variables

In Subsection 6.2.1 we introduced the concept of boundary port-variables for a
class of systems governed by the operator Je. In Section 6.1 we saw that this
class of systems is related to systems described by (6.1) via the feedback trans-
formation

er = Sfr = −SG∗
Re, where e = Lx. (6.23)

Using the equation above, then it is easy to see from Definition 6.4 that the port-
variables associated with systems given by (6.1) can be defined as follows.

Definition 6.7. The boundary port-variables associated with the differential oper-
ator (J − GRSG∗

R) given by (6.2)–(6.3) are the vectors ge∂ , gf∂ defined as follows
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6. Systems with Dissipation

a. If condition (6.4a) is satisfied then

[
gf∂,e

ge∂,e

]
= Rext τ

([
e

−SG∗
Re

])
, (6.24)

where Rext ∈ R
2(n+m)N×2(n+m)N is defined according to Lemma 2.4 and

the boundary trace operator τ : HN (a, b; Rn+m) → R
2(n+m)N is described

in Definition 2.5. Furthermore, ge∂ , gf∂ ∈ R
(n+m)N .

b. If condition (6.4b) is satisfied, then

[
gf∂,e

ge∂,e

]
= Rext τ(e), (6.25)

where Rext ∈ R
2nN×2nN is defined according to Lemma 2.4. Furthermore,

ge∂ , gf∂ ∈ R
nN and the boundary trace operator τ : HN (a, b; Rn) → R

2nN

is described in Definition 2.5. ♣

Remark 6.8. Observe that the definition above is the same as Definition 6.4
whenever er = −SG∗

Re. Thus, these boundary port-variables play a similar roll
to those in Section 6.2 and Chapter 2. ♣

6.3.2. Boundary control systems related to (J − GRSG∗
R)L

Next we proceed to define boundary control systems for the class given by (6.1).
First we prove that if we set the input u(t) to zero in (6.1) then the resulting
PDE with boundary conditions BLx = 0 will have a unique (classical or weak)
solution. That result is given by the following theorem.

Theorem 6.9: Let k be the dimension of gf∂ and ge∂ according to Definition 6.7,
i.e., k = (n + m)N or k = nN , let W be a k × 2k matrix, and let X be given
by (2.33). Consider the operator Ag = (J − GRSG∗

R)L with domain

D(Ag) =

{
Lx ∈ HN (a, b; Rn)

∣∣∣SG∗
RLx ∈ HN (a, b; Rm),

[
gf∂,Lx

ge∂,Lx

]
∈ kerW

}
.

(6.26)
If W has full rank and satisfies WΣWT ≥ 0, where Σ is given by (2.9), then Ag

generates a contraction semigroup on X and it satisfies

〈Ag x, x〉L ≤ −〈G∗
RLx, SG∗

RLx〉 , ∀x ∈ D(Ag). (6.27)
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6.3. Port-variables and BCS for systems with dissipation

PROOF: As mentioned before, the proof is based on a feedback argument on
the operator Je. We make use of its corresponding semigroup generator Aext

described in Theorem 6.6. Since Aext is the generator of a contraction semigroup

(see Theorem 6.6) on X̃ (see (6.17)) we have from the Lümer-Phillips theorem
(see [Paz83, §1.4 and §3.3]) that

〈Aextx̃, x̃〉L̃ ≤ 0 for all x̃ ∈ D(Aext) and (6.28)

ran (λI −Aext) = X̃ for some λ > 0. (6.29)

Now we can proceed to prove that Ag generates a contraction semigroup on X .
To do so, we use the same Lümer-Phillips theorem. That is, we first prove that
Ag satisfies 〈Ag x, x〉L ≤ 0 for any x ∈ D(Ag) and next that ran (λI − Ag) = X
for some λ > 0. For x ∈ D(Ag), we have

〈Ag x, x〉L = 〈(J − GRSG∗
R)Lx,Lx〉 = 〈J Lx,Lx〉 + 〈−GRSG∗

RLx,Lx〉 .

Define xr = −SG∗
RLx and observe that xr ∈ HN (a, b; Rm), see (6.26). It is now

easy to see that [ x
xr

] ∈ D(Aext) since L̃ = [L 0
0 I ], see Remark 6.8 and (6.18). From

this, the equation above, and since L̃ = [L 0
0 I ] we can see that

〈Ag x, x〉L = 〈J Lx+ GRxr,Lx〉
= 〈J Lx+ GRxr,Lx〉 + 〈G∗

RLx, SG∗
RLx〉 − 〈G∗

RLx, SG∗
RLx〉

= 〈J Lx+ GRxr,Lx〉 + 〈G∗
RLx,−xr〉 − 〈G∗

RLx, SG∗
RLx〉

=

〈[
J GR

−G∗
R 0

] [
Lx
xr

]
,

[
Lx
xr

]〉
− 〈G∗

RLx, SG∗
RLx〉

=

〈
Aext

[
x
xr

]
,

[
x
xr

]〉

L̃
− 〈G∗

RLx, SG∗
RLx〉

≤ − 〈G∗
RLx, SG∗

RLx〉 ≤ 0, (6.30)

where in the third step we used xr = −SG∗
RLx and in the last step we used (6.28)

and the fact that S ≥ 0, see (6.5).

Next we prove the range condition on Ag . That is, for a λ > 0 we have to show
that for any given f ∈ X we can find an x ∈ D(Ag) such that

f = (λI −Ag)x.

In order to prove this, let

P =

[
0 0
0 S−1 − λI

]
.

Since S is coercive, we can find some λ > 0 such that S−1 − λI ≥ 0. Thus we
can assume that P is a nonnegative operator. It thus follows from Corollary 3.3
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of [Paz83] that Aext − P generates a contraction semigroup. This in turn implies

(by the Lümer-Phillips theorem) that ran (λI −Aext + P ) = X̃ . Thus, given any[
f
0

]
∈ X̃ we can find [ x

xr
] ∈ D(Aext) such that

[
f
0

]
= (λI −Aext + P )

[
x
xr

]
=

[
λL−1 − J −GR

G∗
R S−1

] [
Lx
xr

]

⇒ f = (λL−1 − J )Lx− GRxr and

xr = −SG∗
RLx

⇒ f = [λI − (J − GRSG∗
R)L ]x. (6.31)

Since [ x
xr

] =
[ x
−SG∗

RLx

]
∈ D(Aext), it is easy to see that x ∈ D(Ag). Then,

from (6.31) we can see that Ag satisfies the range condition. Concluding, we
see that Ag generates a contraction semigroup.

Remark 6.10. Note that the left-hand side of equation (6.27) involves the inner
product onX , see (2.33), whereas the right-hand side involves theL2-inner prod-
uct. ♣

Observe that the coercivity of the operator S plays an important role in the proof
of existence of solutions. As it will be seen later, this assumption is also important
in the definition of BCS.

Following Theorem 6.6 and Theorem 6.9 we can prove the following result.

Theorem 6.11: Let k be the dimension of gf,∂ and ge,∂ according to Defini-
tion 6.7, i.e., k = (n + m)N or k = nN , and let W be a k × 2k matrix. If W
has full rank and satisfies WΣWT ≥ 0, where Σ is defined in (2.9), then the
system

∂x

∂t
(t) = (J − GRSG∗

R)Lx(t) (6.32)

with input

u(t) = Bx(t) = W

[
gf∂,Lx(t)
ge∂,Lx(t)

]
(6.33)

is a boundary control system on X . Furthermore, the operator Ag = (J −
GRSG∗

R)L with domain

D(Ag) =

{
Lx ∈ HN (a, b; Rn)

∣∣∣SG∗
RLx ∈ HN (a, b; Rm),

[
gf∂,Lx

ge∂,Lx

]
∈ kerW

}
.

(6.34)
generates a contraction semigroup on X .
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6.3. Port-variables and BCS for systems with dissipation

Let W̃ be a full rank matrix of size k× 2k with
[

WfW ] invertible. If we define the

linear mapping C : L−1HN (a, b; Rn) → R
k as,

Cx(t) := W̃

[
gf∂,Lx(t)
ge∂,Lx(t)

]
(6.35)

and the output as
y(t) = Cx(t), (6.36)

then for u ∈ C2(0,∞; Rk), Lx(0) ∈ HN (a, b,Rn), and Bx(0) = u(0) the follow-
ing balance equation is satisfied:

1

2

d

dt
‖x(t)‖2

L =
1

2

[
uT (t) yT (t)

]
PW,W̃

[
u(t)
y(t)

]
− 〈G∗

RLx(t), SG∗
RLx(t)〉

≤ 1

2

[
uT (t) yT (t)

]
PW,W̃

[
u(t)
y(t)

]
, (6.37)

where

P−1

W,W̃
=

[
WΣWT WΣW̃T

W̃ΣWT W̃ΣW̃T

]
. (6.38)

Furthermore, we have that the matrix
(

WΣW T WΣfW TfWΣW T fWΣfW T

)
is invertible if and only

if
[

WfW ] is invertible.

PROOF: We divide the proof in three steps. In Step 1. and 2. we show that we
have a boundary control system in the sense of Section 1.5. In step 3. we prove
(6.37) and (6.38), respectively. For a boundary control system we have to show
that for zero inputs, the operator Ag generates a C0-semigroup, and furthermore
that there exists a bounded operator R mapping into the domain of B and such
that BRu = u for all u ∈ R

k.

Step 1: As mentioned above, we have to show that Ag = (J − GRSG∗
R)L with

domain (6.34) is an infinitesimal generator of a semigroup on X . This follows
directly from Theorem 6.9.

Step 2: We have to find a bounded linear operator R such that LRu ∈ HN (a, b)n

and BRu = u for all u ∈ R
k. Since B(·) = W

[ gf∂,L·
ge∂,L·

]
, the result follows from the

coercitivity of L and the surjectivity of the boundary operator (see Theorem 2.6)
andW . This also follows similarly as the second step in the proof of Theorem 4.5
of [LZM04].

Step 3: By the definition of R and D(Ag), we see that the conditions stated in
the theorem are the same as x(0) − Ru(0) ∈ D(Ag). Hence by Theorem 3.3.3 of
[CZ95b] we have that there exists a classical solution of (6.32)–(6.33). Hence, in
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particular, Lx(t) ∈ HN (a, b; Rn) holds pointwise in t, x(t) is differentiable as a
function of t, and ẋ(t) = (J − GRSG∗

R)Lx(t). Using this, we obtain

d

dt
‖x(t)‖2

L =
d

dt
〈x(t), x(t)〉L

= 〈ẋ(t), x(t)〉L + 〈x(t), ẋ(t)〉L
= 〈(J − GRSG∗

R)Lx(t),Lx(t)〉 + 〈Lx(t), (J − GRSG∗
R)Lx(t)〉 .

Define xr = −SG∗
RLx and observe that xr ∈ HN (a, b; Rm), see (6.34). It is now

easy to see that [ x
xr

] ∈ D(Aext) with L̃ = [L 0
0 I ], see Remark 6.8. From this, the

equation above, and defining L̃ = [L 0
0 I ] we can see by using the coercivity of S,

see (6.5), that

d

dt
‖x(t)‖2

L = 〈J Lx(t) + GRxr(t),Lx(t)〉 + 〈Lx(t),JLx(t) + GRxr(t)〉
= 〈J Lx(t) + GRxr(t),Lx(t)〉 + 〈Lx(t),JLx(t) + GRxr(t)〉

+ 〈G∗
RLx(t), SG∗

RLx(t)〉 + 〈SG∗
RLx(t),G∗

RLx(t)〉
− 2 〈G∗

RLx(t), SG∗
RLx(t)〉 .

And using again the definition of xr = −SG∗
RLx we obtain

d

dt
‖x(t)‖2

L = 〈J Lx(t) + GRxr(t),Lx(t)〉 + 〈Lx(t),JLx(t) + GRxr(t)〉
+ 〈G∗

RLx(t),−xr(t)〉 + 〈−xr(t),G∗
RLx(t)〉 − 2 〈G∗

RLx(t), SG∗
RLx(t)〉

=

〈[
J GR

−G∗
R 0

] [
Lx(t)
xr(t)

]
,

[
Lx(t)
xr(t)

]〉

+

〈[
Lx(t)
xr(t)

]
,

[
J GR

−G∗
R 0

] [
Lx(t)
xr(t)

]〉
− 2 〈G∗

RLx(t), SG∗
RLx(t)〉

=

〈
d

dt

[
x(t)
xr(t)

]
,

[
x(t)
xr(t)

]〉

L̃
+

〈[
x(t)
xr(t)

]
,
d

dt

[
x(t)
xr(t)

]〉

L̃
− 2 〈G∗

RLx(t), SG∗
RLx(t)〉

=
d

dt

∥∥∥∥
[
x(t)
xr(t)

]∥∥∥∥
2

L̃
− 2 〈G∗

RLx(t), SG∗
RLx(t)〉 ,

where we used the fact that d
dt

[
x(t)
xr(t)

]
= JeL̃

[
x(t)
xr(t)

]
(see Theorem 6.6). The

rest of the proof follows from equations (6.21) and (6.22) and the fact that [ x
xr

] ∈
D(Aext).

Note that we now have similar results to those of Chapter 2. The main difference
being that these systems satisfy an energy inequality, unlike Section 2.3 where the
systems were energy preserving. In the next section we discuss some examples,
which should help to illustrate the main ideas presented here.
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6.4. Some examples

Example 6.12 (Fixed bed reactor) Consider the fixed bed reactor of Example 1.5.
The main phenomena which takes place into the reactor are the diffusion and the
convection. The resulting PDE is

∂C

∂t
(t, z) = D

∂2C

∂z2
(t, z) − U

∂C

∂z
(t, z), (6.39)

where U > 0 is the velocity of the fluid and D > 0 the diffusion constant. Note
that the heat equation is obtained if we let U = 0, see Example 1.4. Comparing
the equation above with (6.1), we can easily see that in this case we have

J = −U ∂

∂z
, L = I, −GRSG∗

R = D
∂2

∂z2
.

From this we get

GR =
∂

∂z
, S = D, and G∗

R = − ∂

∂z
, (6.40)

and thus (see equations (6.2) and (6.9)) N = 1,

P1 = −U, G1 = 1, P0 = G0 = 0, and P̃1 =

[
−U 1
1 0

]
= Q.

Recall that G∗
R is the formal adjoint of GR, i.e., the adjoint of GR ignoring bound-

ary variables. Note that in this case equation (6.4a) is satisfied. Then it is easy to
see that equation (6.39) becomes

∂C

∂t
(t, z) = (J − GRSG∗

R)C(t, z). (6.41)

From Definition 6.7 and Lemma 2.4 we obtain the boundary port-variables

[
gf,∂

ge,∂

]
=

1√
2




−U 1 U −1
1 0 −1 0
1 0 1 0
0 1 0 1







C(b)
D ∂C

∂z (b)
C(a)

D ∂C
∂z (a)




=
1√
2




−U(C(b) − C(a)) +D(∂C
∂z (b) − ∂C

∂z (a))
C(b) − C(a)
C(b) + C(a)

D(∂C
∂z (b) + ∂C

∂z (a))


 . (6.42)

Typically, the boundary conditions are chosen as a linear combination of UC
and D ∂C

∂z known as Danckwerts boundary conditions, see [FA62]. In [SMJ+99]
the authors set

D
∂C

∂z
(t, a) − UC(t, a) = UCin(t), and D

∂C

∂z
(t, b) = 0, (6.43)
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where Cin is an input function. It is easy to see that these boundary conditions
can be obtained from the port-variables by premultiplying them by the following
matrix

W =
1√
2

(
−1 0 −U 1
1 U 0 1

)
.

Since this matrix satisfies WΣWT = [ U 0
0 U ] > 0, we have that the results in Theo-

rem 6.11 apply to this system. Note that the domain of the semigroup generator
in this case is, see (6.26),

D(Ag) =

{
x ∈ H1(a, b)

∣∣∣D∂x
∂z

∈ H1(a, b),

[
gf∂,Lx

ge∂,Lx

]
∈ kerW

}

=

{
x ∈ H2(a, b)

∣∣∣D∂x
∂z

(a) − Ux(a) = 0,D
∂x

∂z
(b) = 0

}
.

In particular, assume we selected the output

y(t) =

√
2

2

[
−D ∂C

∂z (t, a)
D ∂C

∂z (t, b) − UC(t, b)

]
. (6.44)

The corresponding W̃ is

W̃ =
1

2

(
1 U 0 −1
1 0 −U 1

)
.

Following equations (6.37) and (6.38) we obtain that the energy of this system,

E(t) = 1
2 ‖x(t)‖

2, satisfies

d

dt
E(t) =

1

2U
‖u(t)‖2

R
− 1

U
‖y(t)‖2

R
−D

∥∥∥∥
∂x

∂z

∥∥∥∥
2

X

, (6.45)

where the last term corresponds to 〈G∗
RLx, SG∗

RLx〉. ∗

Example 6.13 (Timoshenko beam with damping) We study a linear system of
Timoshenko type beam equations with frictional dissipative terms. This system
consist of a model for vibrating beams subjected to two frictional mechanisms.
The transverse vibrations of a beam are given by two coupled partial differential
equations (compare with Examples 1.2 and 2.19)

ρ
∂2w

∂t2
=

∂

∂z

[
K

(
∂w

∂z
− φ

)]
− ∂w

∂t
, z ∈ (a, b), t ≥ 0, (6.46)

Iρ
∂2φ

∂t2
=

∂

∂z

(
EI

∂φ

∂z

)
+K

(
∂w

∂z
− φ

)
− ∂φ

∂t
. (6.47)

The function w(t, z) is the transverse displacement of the beam and φ(t, z) is the
rotation angle of a filament of the beam. The coefficients ρ(z), Iρ(z), E(z), I(z),
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and K(z) are the mass per unit length, the polar moment of inertia of a cross
section, Youngs modulus of elasticity, the moment of inertia of a cross section,
and the shear modulus respectively. See [RFSC05] and the references therein for
more details on this model.

As state variables we choose

x1 = ∂w
∂z − φ : shear displacement,

x2 = ρ∂w
∂t : transverse momentum distribution,

x3 = ∂φ
∂z : angular displacement,

x4 = Iρ
∂φ
∂t : angular momentum distribution.

Then the model of the beam can be rewritten as

∂

∂t




x1

x2

x3

x4


 =




0 ∂
∂z 0 −1

∂
∂z 0 0 0
0 0 0 ∂

∂z

1 0 ∂
∂z 0




︸ ︷︷ ︸
J




K x1
1
ρ x2

EI x3
1
Iρ
x4


−




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1




︸ ︷︷ ︸
GRSG∗

R




K x1
1
ρ x2

EI x3
1
Iρ
x4


 .

(6.48)
From here we see J and GRSG∗

R, and from this it follows that N = 1, n = 4,
m = 2,

P1 =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , P0 =




0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0


 , GR =




0 0
1 0
0 0
0 1


 = G0,

G∗
R = GT

0 , S = I , and L = diag{K, 1
ρ , EI,

1
Iρ
}. In this case GR = G0 and clearly

this system satisfies condition (6.4b), i.e., P1 is nonsingular. In [RFSC05] the
beam is assumed to be clamped at both sides. This corresponds to the following
boundary conditions (inputs)

1

ρ(a)
x2(a) =

1

Iρ(a)
x4(a) =

1

ρ(b)
x2(b) =

1

Iρ(b)
x4(b) = 0. (6.49)

The boundary port-variables are given by (2.55). From this we can see that W
can be selected as

W =
1√
2




−1 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 1
1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1


 ⇒ WΣWT = 0.
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As output we can choose

y =




−K(a)x1(a)
−(EI)(a)x3(a)
K(b)x1(b)

(EI)(b)x3(b)


 , with W̃ =

1√
2




0 1 0 0 −1 0 0 0
0 0 0 1 0 0 −1 0
0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0


 .

Following equations (6.37) and (6.38) we obtain that the energy of this system,

E(t) = 1
2 ‖x(t)‖

2
L, satisfies

d

dt
E(t) ≤ uT (t) y(t). ∗

6.5. A larger class of systems

In Chapter 2 it was assumed that the matrix Q appearing in Theorem 2.1 was
nonsingular, see Assumption 2.2. Similarly, conditions (6.4a)–(6.4b) were im-
posed in order to guarantee that the resulting bilinear form in Theorem 6.2 is
nondegenerate, i.e., that the resulting Q is nonsingular. However, there are some
cases in which these conditions are not satisfied. The following example shows
one of those situations.

Example 6.14 Consider a vibrating string with structural damping. Structural
damping is the use of internal friction in a material to change vibrational energy
into heat. This reduces excessive noise and vibration by converting them into
heat to be expelled into the surrounding area. In this case the model becomes
(see Example 1.1)

∂2u

∂t2
(z, t) = c

∂2u

∂z2
(z, t) +

∂3u

∂z2∂t
(z, t), c =

T

ρ
.

This can be written as an evolution equation as we did in Example 1.6, see (1.15),
as follows

∂

∂t

[
p
q

]
(z, t) =

[
0 1
1 0

]
∂

∂z

[ 1
ρp

Tq

]
(z, t) +

[
1 0
0 0

]
∂2

∂z2

[ 1
ρp

Tq

]
(z, t). (6.50)

Since this is a system with dissipation we need to consider the operator describ-
ing the interconnection structure, i.e., Je. In this case we have that J = [ 0 1

1 0 ] ∂
∂z ,

S = 1, GR = [ 1
0 ] ∂

∂z , and G∗
R = −

[
1 0

]
∂
∂z . This implies that the extended

operator Je =
[

J GR

−G∗
R 0

]
is described by (see Proposition 6.1)



f1
f2
fr


 =




0 1 1
1 0 0
1 0 0




︸ ︷︷ ︸eP1

∂

∂z



e1
e2
er


 = P̃1

∂

∂z︸ ︷︷ ︸
Je



e1
e2
er


 =




∂
∂z (e2 + er)

∂e1

∂z

∂e1

∂z


 . (6.51)
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In this case, neither condition (6.4a) nor (6.4b) is satisfied. This obviously gives
that the corresponding matrixQ is singular. In fact, in this case the port-variables
would be

[
f∂

e∂

]
=




e2(b) − e2(a) + er(b) − er(a)
e1(b) − e1(a)
e1(b) − e1(a)
e1(b) + e1(a)
e2(b) + e2(a)
er(b) + er(a)



.

From this it is clear that the range of
[

f∂
e∂

]
cannot be R

6. Furthermore, the non-

invertibility of P̃1 (equivalently, of Q) gives that selecting HN (a, b)n (N = 1)
as the domain of Je is not enough. Indeed, from (6.51) we can see that the
maximal domain of Je should be {e ∈ L2(a, b)

3 | e1, (e2 + er) ∈ H1(a, b)},
which clearly contains H1(a, b)3. Note that once Je is considered in this larger
domain (and PN is nonsingular), the representation for Je in (6.51) is not cor-

rect. Strictly speaking, it should be written as Je = ∂
∂z P̃1(·). With an abuse of

notation we use either one of the representations. Also, in this maximal domain
∂
∂z (e2 + er) has to be considered as a single expression, i.e., it is not necessarily

true that ∂
∂z (e2 + er) = ∂e2

∂z + ∂er

∂z . In particular, the operator Je should be seen as

Je =
[

J&GR

−G∗
R, 0

]
, where the operator J&GR when restricted to HN (a, b)n+m can

be split as [J , GR]. ∗

In order to cover these cases we try to extend Theorem 2.1 (or Theorem 6.2) to in-
clude matricesQwhich are singular. To do so we study the expression appearing

in the right hand side of (2.4). For simplicity let lTi =
[
eT
i (z), . . . ,

dN−1eT
i

dzN−1 (z)

]

and let π denote the orthogonal projector onto the range1 of Q, which implies
that I − π is the orthogonal projector onto the kernel of Q, i.e., Q(I − π) = 0.
Then

〈l1, Q l2〉RnN = 〈(I − π + π)l1, Q(I − π + π) l2〉RnN = 〈π l1, Q π l2〉RnN .

Let r be the rank of Q and M be an nN × r matrix, whose columns are lin-
early independent and span the range of Q. Then π can be chosen as π =
M(MTM)−1MT . In fact, by choosing the columns ofM to be eigenvectors corre-
sponding to nonzero eigenvalues ofQ, we get thatMTQM is an r×r nonsingular
diagonal matrix and MTM = I , see [Mey01, §7.5]. Using π = M(MTM)−1MT

1Recall that since Q is symmetric we have that ran (Q) ⊥ ker(Q), see [Mey01, pp. 408-410].
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in the equation above yields

〈l1, Q l2〉RnN =
〈
M(MTM)−1MT l1, QM(MTM)−1MT l2

〉
RnN

=
〈
(MTM)−1MT l1,M

T QM(MTM)−1MT l2
〉

Rr

=
〈
MQ l1, Q̃MQ l2

〉
Rr
,

where Q̃ = MT QM and MQ = (MTM)−1MT . Observe that Q̃ is nonsingular
since the columns of M span the range of Q. Following this we can rewrite
Theorem 2.1 as follows.

Theorem 6.15: Assume that the conditions on Theorem 2.1 hold. Let r be the
rank of Q and let M be an nN × r matrix whose columns span the range of Q.
Then for any two functions e1, e2 ∈ HN (a, b)n we have

∫ b

a

(J e1)T (z) e2(z) dz +

∫ b

a

eT
1 (z)(J e2)(z) dz

=



[
eT
1 (z), . . . ,

dN−1eT
1

dzN−1 (z)

]
MT

Q Q̃MQ




e2(z)
...

dN−1e2

dzN−1 (z)







b

a

=

〈[
MQ 0
0 MQ

]
τ(e1),

[
Q̃ 0

0 −Q̃

] [
MQ 0
0 MQ

]
τ(e2)

〉

R2r

, (6.52)

where Q̃ = MT QM , MQ = (MTM)−1MT , and τ(·) is the operator described
in Definition 2.5.

Remark 6.16. Observe that if the matrixQ is nonsingular, then the matrixM can

be selected as the identity matrix. Thus, in this case, Q̃ = Q and MQ = I . ♣

Observe that now equation (6.52) defines a nondegenerate bilinear form. Obvi-
ously, once we have redefined Stokes theorem we also need to modify the defi-
nition of the boundary port-variables.

Definition 6.17. Consider the operators J and τ(·) as described in Theorem 6.15.
Then, the boundary port-variables associated with the differential operator J are

the vectors ẽ∂ , f̃∂ ∈ R
r, defined by

[
f̃∂,e

ẽ∂,e

]
= R̃ext

[
MQ 0
0 MQ

]
τ(e), e ∈ HN (a, b)n, (6.53)
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where R̃ext ∈ R
2r×2r is defined by (see Lemma 2.4)

R̃ext =
1√
2

[
Q̃ −Q̃
I I

]
. (6.54)

♣

Remark 6.18. Using the definition above and Lemma 2.4 it is easy to see that
equation (6.52) can be rewritten as
∫ b

a

(J e1)T (z) e2(z) dz +

∫ b

a

eT
1 (z)(J e2)(z) dz =

〈[
f̃∂,e1

ẽ∂,e1

]
,Σ

[
f̃∂,e2

ẽ∂,e2

]〉

R2r

,

(6.55)

which shows that the bilinear form (2.14) defined in this way is nondegenerate.♣

Note that equations (6.52) and (6.55) hold for all e1, e2 ∈ HN (a, b)n. However,
since PN (equivalently, Q) is not assumed to be invertible, we would like to con-
sider the space (called the maximal domain of J )

H(J, (a, b))n = {x ∈ L2(a, b)
n | J x ∈ L2(a, b)

n} (6.56)

as the domain of the skew-symmetric operator J . This is a Hilbert space when
endowed with the norm

‖x‖2
J = ‖x‖2

+ ‖J x‖2
. (6.57)

(Recall that ‖·‖ denotes the L2-norm.) Note that in the case N = 1, the maximal
domain of J is simply H(J, (a, b))n = {x ∈ L2(a, b)

n | P1 x ∈ H1(a, b)n}. In the
case N ≥ 2 it is better to represent it as (6.56).

It is clear that if we consider the space H(J, (a, b))n we need to extend Theo-
rem 6.15, and hence (6.55), to functions e1, e2 ∈ H(J, (a, b))n. This implies that

the boundary port operator
[

f̃∂

ẽ∂

]
needs to be extended to H(J, (a, b)). This fol-

lows from the following theorem.

Theorem 6.19: Let J be a formally skew-symmetric operator described
by (2.2)–(2.3) and consider the space H(J, (a, b))n defined in (6.56). Let r be

the rank of Q as described in Theorem 6.15. The boundary operator
[

f̃∂

ẽ∂

]
of

Definition 6.17 defined onHN (a, b)n extends by continuity to a continuous lin-

ear map – still denoted by
[

f̃∂

ẽ∂

]
– from H(J, (a, b))n onto R

2r. Furthermore,

Green’s identity (6.55) holds for all e1, e2 ∈ H(J, (a, b))n, that is
∫ b

a

(J e1)T (z) e2(z) dz +

∫ b

a

eT
1 (z)(J e2)(z) dz =

〈[
f̃∂,e1

ẽ∂,e1

]
,Σ

[
f̃∂,e2

ẽ∂,e2

]〉

R2r

(6.58)
holds for all e1, e2 ∈ H(J, (a, b))n.
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PROOF: The key point in the proof is the denseness of HN (a, b)n in H(J, (a, b))n

(with the topology induced by (6.57)). This follows from the denseness of the in-
finitely differential functions in H(J, (a, b))n, which is proved (in a more general
case) in Theorem 8.14. Now, since equation (6.55) holds for all e1, e2 ∈ HN (a, b)n,
we can use that to prove the desired result by using a density argument. Thus it
is easy to see, by using (6.55), that

∣∣∣
〈[

f̃∂,e1
ẽ∂,e1

]
,Σ
[

f̃∂,e2
ẽ∂,e2

]〉
R2r

∣∣∣ ≤ ‖J e1‖ ‖e2‖ + ‖e1‖ ‖J e2‖

≤ (‖J e1‖ + ‖e1‖) (‖e2‖ + ‖J e2‖)
≤ c ‖e1‖J ‖e2‖J , ∀ e1, e2 ∈ HN (a, b)n,

where we used the Cauchy-Schwarz inequality and c is a positive constant. The

inequality above implies that the bilinear form
〈[

f̃∂,e1
ẽ∂,e1

]
,Σ
[

f̃∂,e2
ẽ∂,e2

]〉
R2r

can be

extended by density to all e1, e2 ∈ H(J, (a, b))n, see [Aub00, §1.3]. The result
follows from this.

Example 6.20 To illustrate the idea we continue Example 6.14. In this case we
have that the matrix M containing the normalized eigenvectors corresponding

to nonzero eigenvalues of Q = P̃1 is

M =
1

2




0 2
1 0
1 0


 ⇒ Q̃ =

[
0 1
1 0

]
, and MQ =

(
0 1 1
1 0 0

)
.

It thus follows that the new port-variables are

[
f̃∂,e

ẽ∂,e

]
=

√
2

2




e1(b) − e1(a)
(e2 + er)(b) − (e2 + er)(a)
(e2 + er)(b) + (e2 + er)(a)

e1(b) + e1(a)


 e = (e1, e2, er).

We can conclude that the port-variables for the system with structural damping
given by (6.50) are

[
g̃f∂

g̃e∂

]
=

√
2

2




e1(b) − e1(a)(
e2 + ∂e1

∂z

)
(b) −

(
e2 + ∂e1

∂z

)
(a)

(
e2 + ∂e1

∂z

)
(b) +

(
e2 + ∂e1

∂z

)
(a)

e1(b) + e1(a)


 ,

which clearly are the boundary variables needed. Furthermore, in this case we
also have H(Je, (a, b))

3 = {e ∈ L2(a, b)
3 | e1 ∈ H1(a, b), and (e2 + er) ∈

H1(a, b)}. It is worth to remark that one first find the port-variables for e ∈
HN (a, b)n+m and then this operator is extended to H(Je, (a, b))

n+m. ∗

From all this it is easy to see that the results of Section 6.3 apply to the class
of systems (6.1) without the need of assumption (6.4a) or (6.4b) by using the
modifications presented in this section.
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6.5.1. Systems related to skew-symmetric operators

The results presented in Sections 2.2 and 2.3 were valid under the assumption
of the invertibility of the matrix Q, see Assumption 2.2. In this subsection we
present some ideas that allow us to extend those results so that Assumption 2.2
can be weakened. In other words, we study systems described by (2.1)–(2.3) and
we want to obtain BCS in the sense of Section 1.5. In this case, the boundary
port-variables are described in Definition 6.17 and the Dirac structure is similar
to that in Chapter 2 with the main difference being the domain of J . The flow
and effort spaces are

F = E = L2(a, b; R
n) × R

r. (6.59)

Hence the bond space B is F×E and, based on equation (6.58), we endow B with
the canonical symmetric pairing described in (2.14).

Theorem 6.21: Consider the operators J and
[

f̃∂

ẽ∂

]
as described in Theo-

rem 6.19. Let the boundary port-variables be described as in Definition 6.17.
Then, the subspace DJ of B defined by

DJ =








f

f̃∂,e

e
ẽ∂,e


 ∈ B

∣∣∣∣∣∣∣

e ∈ H(J, (a, b))n, J e = f,
[
f̃∂,e

ẽ∂,e

]

|HN (a,b)n

= R̃ext

[
MQ 0
0 MQ

]
τ(e)




(6.60)

is a Dirac structure with respect to (2.14), whereRext is given in Definition 6.17.

PROOF: The proof is based on showing the following inclusions

DJ ⊂ D⊥
J , and D⊥

J ⊂ DJ ,

where the orthogonal complement is with respect to (2.14). The first inclusion
follows easily from the definition of the bilinear form and Theorem 6.19. In or-
der to prove the other inclusion let b1 = [fT , fT

∂,e, e
T , eT

∂,e]
T ∈ DJ and b2 =

[φT , φT
∂ , η

T , ηT
∂ ]T ∈ D⊥

J . Thus

0 = 〈b1, b2〉+ = 〈f, η〉 + 〈e, φ〉 − 〈f∂,e, η∂〉R
− 〈e∂,e, φ∂〉R

. (6.61)

Since e ∈ H(J, (a, b))n we can select any ewith compact support strictly included
in (a, b) in the equation above, which gives

0 = 〈f, η〉 + 〈e, φ〉 = 〈J e, η〉 + 〈e, φ〉 ∀ e ∈ D(a, b)n.

Since this holds for all e with compact support strictly included in (a, b), we can
see by using the derivative in the distributional sense, see Definition 8.3, that

159



6. Systems with Dissipation

〈〈J e, η〉〉D(a,b) = −〈〈e,J η〉〉D(a,b). Using this in the equation above yields

0 = −〈〈e,J η〉〉D(a,b) + 〈〈e, φ〉〉 ∀ e ∈ D(a, b)n.

From this we conclude that J η = φ in D′(a, b)n (recall that D′(a, b) is the dual of
D(a, b)). Since φ ∈ L2(a, b)

n we can conclude that

J η = φ ∈ L2(a, b)
n and hence η ∈ H(J, (a, b))n. (6.62)

Using the equation above together with (6.60) in (6.61) gives

0 = 〈J e, η〉 + 〈e,J η〉 − 〈f∂,e, η∂〉R
− 〈e∂,e, φ∂〉R

,

which by Theorem 6.19 and the definition of the boundary port-variables gives,
see also (6.58),

0 =

〈[
f̃∂,e

ẽ∂,e

]
,Σ

[
f̃∂,η

ẽ∂,η

]〉

R

−
〈
f̃∂,e, η∂

〉
R

− 〈ẽ∂,e, φ∂〉R

=

〈[
f̃∂,e

ẽ∂,e

]
,Σ

[
f̃∂,η

ẽ∂,η

]〉

R

−
〈[

f̃∂,e

ẽ∂,e

]
,Σ

[
φ∂

η∂

]〉

R

.

Since
[

f̃∂,e

ẽ∂,e

]
is surjective for all e ∈ HN (a, b)n, and hence for all e ∈ H(J, (a, b))n,

we can conclude form the equation above that

[
φ∂

η∂

]
=

[
f̃∂,η

ẽ∂,η

]
.

This gives the desired result.

Now that we have the Dirac structure it is not too difficult to define boundary
control systems. Following Section 2.3 it is easy to see that the operator below is
a candidate to be the semigroup generator of the BCS.

Lemma 6.22: Consider the operator J onL2(a, b)
n and

[
f̃∂

ẽ∂

]
as described in The-

orem 6.19. Let r be the rank ofQ in Theorem 6.15 (or equivalently, the dimension

of Q̃) and let W be a full rank matrix of size r × 2r which satisfies W ΣWT ≥ 0.
Define the operator A and its domain, D(A), as

Ax = J x (6.63)

and

D(A) =

{
x ∈ L2(a, b)

n | x ∈ H(J, (a, b))n and

[
f̃∂,x

ẽ∂,x

]
∈ kerW

}
. (6.64)
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6.5. A larger class of systems

Then the adjoint of A equals −J with domain (see (2.20))

D(A∗) =

{
x ∈ H(J, (a, b))n |

[
f̃∂,x

ẽ∂,x

]
∈ ker

[
−(I + V T ), I − V T

]}
.

(6.65)

♥

PROOF: First recall that W can be written as (2.20) since it satisfies W ΣWT ≥ 0.
To find the adjoint of A we employ the same ideas used in the proof of Theo-
rem 2.24. We use the defining condition (2.63), i.e.,

〈A y, u〉 = 〈y, w〉 w ∈ L2(a, b)
n, ∀ y ∈ D(A).

By applying the same ideas used to prove (6.62), i.e., by selecting y ∈ D(a, b)n

and using the derivative in the sense of distributions, one can show that w =
−J u and hence u must be an element of H(J, (a, b))n, or equivalently, D(A∗) ⊂
H(J, (a, b))n. This allows us to use Theorem 6.19. Using (6.58) we obtain

〈Ay, u〉 = 〈J y, u〉 = −〈y,J u〉 +

[
f̃∂,y

ẽ∂,y

]T

Σ

[
f̃∂,u

ẽ∂,u

]
,

where Σ is given in (2.9). Since
[

f̃∂,y

ẽ∂,y

]
lies in the kernel of W we get, from equa-

tion (2.21), that
[

f̃∂,y

ẽ∂,y

]
=
[

I−V
−(I+V )

]
l for some l ∈ R

r. Hence

〈Ay, u〉 = 〈y,−J u〉 + lT
[
I − V T , −(I + V T )

]
Σ

[
f̃∂,u

ẽ∂,u

]

= 〈y,−J u〉 + lT
[
−(I + V T ), I − V T

] [ f̃∂,u

ẽ∂,u

]
.

Using the defining condition (2.63) and the fact that the equality above must hold
for all l ∈ R

nN , we conclude that
[
f̃∂,u

ẽ∂,u

]
∈ ker

[
−(I + V T ), I − V T

]
and A∗ u = −J u.

This concludes the proof.

Once we know the adjoint of the operator A in Lemma 6.22 it is easy to prove
that it generates a contraction semigroup. The proof is exactly the same as the
proof of Theorem 4.3 of [LZM04]. The proof is established by noticing that e1 =
e2 ∈ D(A) in (6.58) gives

〈Ae1, e1〉 = 〈J e1, e1〉 =
1

2

[
f̃∂,e1

ẽ∂,e1

]T

Σ

[
f̃∂,e1

ẽ∂,e1

]
.

161



6. Systems with Dissipation

Since
[

f̃∂,e1
ẽ∂,e1

]
lies in the kernel of W we get, from equation (2.21), that

[
f̃∂,e1
ẽ∂,e1

]
=

[
I−V

−(I+V )

]
l for some l ∈ R

r. Thus the equation above becomes

〈Ae1, e1〉 =
1

2
lT
[
I − V T , −(I + V T )

]
Σ

[
I − V

−(I + V )

]
l = lT (−I+V TV )l ≤ 0,

where it was used V TV ≤ I , see (2.20). A similar argument shows that 〈A∗e, e〉 ≤
0 for all e ∈ D(A∗). This proof that A generates a contraction semigroup. Note
that if V TV = I , which corresponds to W ΣWT = 0, we have that A generates a
unitary semigroup, see [LZM04, §4] for more details.

Now that we know that A generates a contraction semigroup we can include the
operator L as we did in Section 2.3.3. In this case the proof of the following result
is the same as the proof of Theorem 2.13 with the only difference being that the
operator A is the one described in Lemma 6.22.

Theorem 6.23: Consider the skew-symmetric operator J onX (see (2.33)) and

the operator
[

f̃∂

ẽ∂

]
as described in Theorem 6.19. Let r be the rank of Q in

Theorem 6.15 (or equivalently, the dimension of Q̃) and let W be a full rank
matrix of size r × 2r. Define the operator AL and its domain, D(AL), as

AL x = JLx (6.66)

and

D(AL) =

{
x ∈ X | Lx ∈ H(J, (a, b))n and

[
f̃∂,Lx

ẽ∂,Lx

]
∈ kerW

}
. (6.67)

Then AL generates a contraction semigroup T (t), t ≥ 0, on X if and only if W
satisfies W ΣWT ≥ 0.

Furthermore, A is the infinitesimal generator of a unitary semigroup on X if
and only if W satisfies W ΣWT = 0.

Furthermore, BCS can be obtained as described below.

Theorem 6.24: Consider the skew-symmetric operator J onX (see (2.33)) and

the operator
[

f̃∂

ẽ∂

]
as described in Theorem 6.21. Let r be the rank of Q in

Theorem 6.15 (or equivalently, the dimension of Q̃) and let W be a full rank
matrix of size r × 2r. If W satisfies WΣWT ≥ 0, where Σ is defined in (2.9),
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6.5. A larger class of systems

then the following system

∂x

∂t
(t) = JLx(t), or equivalently

(
ẋ(t), f̃∂,Lx(t), Lx(t), ẽ∂,Lx(t)

)
∈ DJ

defined on the state space X (see (2.33)) with input

u(t) = Bx(t) = W

[
f̃∂,Lx(t)
ẽ∂,Lx(t)

]

is a boundary control system on X . Furthermore, the operator AL = JL with
domain

D(AL) =

{
x ∈ X | Lx ∈ H(J, (a, b))n and

[
f∂,Lx

e∂,Lx

]
∈ kerW

}
, (6.68)

generates a contraction semigroup on X .

Let W̃ be a full rank matrix of size r × 2r such that
[

WfW ] is invertible. If we

define the linear mapping C : L−1H(J, (a, b))n → R
r as,

Cx(t) := W̃

[
f̃∂,Lx(t)
ẽ∂,Lx(t)

]
(6.69)

and the output as
y(t) = Cx(t), (6.70)

then for u ∈ C2(0,∞; Rr), Lx(0) ∈ H(J, (a, b))n, and Bx(0) = u(0) the follow-
ing balance equation is satisfied:

d

dt
H(t) =

1

2

d

dt
‖x(t)‖2

L =
1

2

[
uT (t) yT (t)

]
PW,W̃

[
u(t)
y(t)

]
, (6.71)

where

P−1

W,W̃
=

[
W

W̃

]
Σ

[
W

W̃

]T

=

[
WΣWT WΣW̃T

W̃ΣWT W̃ΣW̃T

]
. (6.72)

Furthermore, we have that the matrix
(

WΣW T WΣfW TfWΣW T fWΣfW T

)
is invertible if and only

if
[

WfW ] is invertible.

These results can also be used to prove similar results for systems with dissipa-
tion as it is shown in the next subsection.

Remark 6.25. Even though we have extended the results of Sections 2.2 and 2.3
to a larger class of systems, it does not necessarily follow that the results of Sec-
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6. Systems with Dissipation

tion 2.5 hold for this larger class. For instance, it is know that the vibrating string
with structural damping of Example 6.14 does not have a compact resolvent,
see [LT98]. ♣

6.5.2. Systems with dissipation

Now that we have the results for skew-symmetric operators we can extend the
results presented in Section 6.3. That is we study systems described by (6.1)–
(6.2) were it is only assumed condition (6.3). As we know from Section 6.1 there
is a skew-symmetric operator Je related to the class of systems (6.1)–(6.2). Thus
we only need to use the results of the previous subsection to obtain BCS from
this class of systems (as we did in Section 6.3). First we state the results for the
extended operator Je which is related to (J − GRSG∗

R).

Systems related to Je

In this subsection we consider the operator Je described in Section 6.1. However,
since we extend this operator to the space H(Je, (a, b))

n+m, see (6.56), we have
to consider

Je =

[
J&GR

−G∗
R 0

]
, D(Je) = H(Je, (a, b))

n+m, (6.73)

where the operator J&GR when restricted to HN (a, b)n+m can be seen as the
two operators

[
J GR

]
. First we need to redefine the boundary port-variables

based on Definition 6.17 and the ideas of Section 6.1, see equation (6.23).

Definition 6.26. Consider the operator Je related to (J − GRSG∗
R). Let r be

the dimension of Q̃ related to Je as in Theorem 6.15 and τ : HN (a, b)n+m →
R

2(n+m)N be given by (2.10). Then, the boundary port-variables associated with Je

are the vectors f̃∂ , ẽ∂ ∈ R
r, defined by

[
f̃∂,ẽ

ẽ∂,ẽ

]
= R̃ext

[
MQ 0
0 MQ

]
τ

([
e
er

])
, with ẽ =

[
e
er

]
, (6.74)

where R̃ext ∈ R
2r×2r is defined by (see Lemma 2.4)

R̃ext =
1√
2

[
Q̃ −Q̃
I I

]
. (6.75)

♣

It is clear now, from Theorem 6.19, that these port-variables can also be extended
to H(Je, (a, b))

n+m. Also the operator Je defines a Dirac structure, see Theo-
rem 6.21. Now that we have defined the boundary port-variables and the Dirac
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structure which are related to the extended operator Je on (6.73) we can rewrite
Theorem 2.14 adapted to this skew-symmetric operator.

In other words, we consider systems described by the following PDE

∂x

∂t
(t) = JeL̃x(t),

where L̃ =
[ L1 0

0 I

]
is a coercive operator on the state space X̃ defined in (6.17)

and define BCS. Following Theorem 6.24 it is easy to see that the following results
holds.

Theorem 6.27: Consider the skew-symmetric operator Je in (6.73). Let r be

the rank of Q in Theorem 6.15 (or equivalently, the dimension of Q̃) and let
W be a full rank matrix of size r × 2r. If W satisfies WΣWT ≥ 0, where Σ is
defined in (2.9), then the following system with L̃ =

[L1 0
0 I

]

∂x

∂t
(t) = JeL̃x(t), or equivalently

(
ẋ(t), f̃∂,L̃x(t), L̃x(t), ẽ∂,L̃x(t)

)
∈ DJe

defined on the state space X̃ (see (6.17)) with input

u(t) = Bx(t) = W

[
f̃∂,L̃x(t)

ẽ∂,L̃x(t)

]

is a boundary control system on X̃ . Furthermore, the operator Aext = JeL̃
with domain

D(Aext) =

{
x̃ =

[
x
xr

]
∈ X̃ | L̃x̃ ∈ H(Je, (a, b))

n+m and

[
f̃∂,L̃x̃

ẽ∂,L̃x̃

]
∈ kerW

}

(6.76)
generates a contraction semigroup on X̃ .

Let W̃ be a full rank matrix of size r × 2r such that
[

WfW ] is invertible. If we

define the linear mapping C : L−1H(Je, (a, b))
n+m → R

r as,

Cx(t) := W̃

[
f̃∂,L̃x(t)

ẽ∂,L̃x(t)

]
(6.77)

and the output as
y(t) = Cx(t), (6.78)

then for u ∈ C2(0,∞; Rr), L̃x(0) ∈ H(Je, (a, b))
n+m, and Bx(0) = u(0) the

following balance equation is satisfied:

1

2

d

dt
‖x(t)‖2

L̃ =
1

2

[
uT (t) yT (t)

]
PW,W̃

[
u(t)
y(t)

]
, (6.79)
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where

P−1

W,W̃
=

[
W

W̃

]
Σ

[
W

W̃

]T

=

[
WΣWT WΣW̃T

W̃ΣWT W̃ΣW̃T

]
. (6.80)

Furthermore, we have that the matrix
(

WΣW T WΣfW TfWΣW T fWΣfW T

)
is invertible if and only

if
[

WfW ] is invertible.

Now that we have defined BCS for the operator Je we can proceed to define BCS
for the class of systems (6.1).

Systems related to (J − GRSG∗
R)L

Now we turn to systems described by (6.1) where it is only assumed that (6.3)
holds. Recall that the state space X is defined in (2.33) (note that it is different

from X̃).

Before stating the main result, we stress that if we define (with Je in (6.73))

[
f
fr

]
= Je

[
e
er

]
=

[
J&GR

−G∗
R 0

] [
e
er

]

and let er = Sfr = −SG∗
Re with S a coercive operator, see Figure 6.1, we obtain

f = J&GR

[
e

−SG∗
Re

]

which is the same operator that defines our class of systems (6.1), see Section 6.1.
As mentioned earlier, this idea of feedback will be used to prove the main re-
sults of this subsection. First, based on Definition 6.26, we introduce again the
notion of boundary port-variables adapted to the class of systems described
by (6.1). Then we proceed to prove the main results. For simplicity we denote by
H(Ag, (a, b))

n the space described by

H(Ag, (a, b))
n =

{
x ∈ X

∣∣∣
[

Lx
−SG∗

RLx

]
∈ H(Je, (a, b))

n+m

}
, (6.81)

where Je is the skew-symmetric operator related to J − GRSG∗
R, i.e., Je =[

J GR

−G∗
R 0

]
, see Section 6.1. This can be considered as the maximal domain of

the operator (J − GRSG∗
R).

Definition 6.28. Consider the operator Je described in (6.73) related to (J −
GRSG∗

R). Let r be the dimension of Q̃ related to Je as in Theorem 6.15 and
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τ : HN (a, b)n+m → R
2(n+m)N be given by (2.10). Then, the boundary port-

variables associated with the differential operator (J − GRSG∗
R) are given by the

operator
[

g̃e∂

g̃f∂

]
: H(Ag, (a, b))

n → R
2r defined (when e ∈ HN (a, b)n) by

[
g̃f∂,e

g̃e∂,e

]

|HN (a,b)n+m

= R̃ext

[
MQ 0
0 MQ

]
τ

([
e

−SG∗
Re

])
, (6.82)

where R̃ext ∈ R
2r×2r is defined by (see Lemma 2.4)

R̃ext =
1√
2

[
Q̃ −Q̃
I I

]
. (6.83)

♣

Now it is easy to see that the results of Section 6.3.2 also hold in this case if we
use the definition above. In particular, we have the following two theorems.

Theorem 6.29: Let r be the dimension of g̃f∂ and g̃e∂ according to Defini-
tion 6.28 and let W be an r × 2r matrix. Consider the operator Je related to
(J − GRSG∗

R) and the operator Ag = (J − GRSG∗
R)L with domain

D(Ag) =

{
x ∈ X

∣∣∣
[

x
−SG∗

RLx

]
∈ D(Aext)

}

=

{
x ∈ X

∣∣∣
[

Lx
−SG∗

RLx

]
∈ H(Je, (a, b))

n+m,

[
g̃f∂,Lx

g̃e∂,Lx

]
∈ kerW

}
.

(6.84)

If W has full rank and satisfies WΣWT ≥ 0, where Σ is given by (2.9), then Ag

generates a contraction semigroup on X and it satisfies

〈Ag x, x〉L ≤ −〈G∗
RLx, SG∗

RLx〉 , ∀x ∈ D(Ag). (6.85)

Remark 6.30. Note that for simplicity we represent Ag as (J − GRSG∗
R)L, but

strictly speaking, in this case, it should be written as Ag x = J&GR

[
Lx

−SG∗
RLx

]
.♣

PROOF (PROOF OF THEOREM 6.29): The proof is similar to the proof of Theo-
rem 6.9 and it is based on a feedback argument on the operator Je. We make
use of its corresponding semigroup generator Aext described in Theorem 6.27.

Since Aext is the generator of a contraction semigroup (see Theorem 6.27) on X̃
(see (6.17)) we have from the Lümer-Phillips theorem (see [Paz83, §1.4 and §3.3])
that

〈Aextx̃, x̃〉L̃ ≤ 0 for all x̃ ∈ D(Aext) and (6.86)

ran (λI −Aext) = X̃ for some λ > 0. (6.87)
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Now we can proceed to prove that Ag generates a contraction semigroup on X .
To do so, we use the same Lümer-Phillips theorem. That is, we first prove that
Ag satisfies 〈Ag x, x〉L ≤ 0 for any x ∈ D(Ag) and next that ran (λI − Ag) = X
for some λ > 0. For x ∈ D(Ag), we have

〈Ag x, x〉L =

〈
J&GR

[
Lx

−SG∗
RLx

]
,Lx

〉

Define xr = −SG∗
RLx and observe that [ x

xr
] ∈ D(Aext) since L̃ = [L 0

0 I ], see (6.76)

and Definitions 6.26 and 6.28. From this, the equation above, and since L̃ = [L 0
0 I ]

we can see that

〈Ag x, x〉L =

〈
J&GR

[
Lx
xr

]
,Lx

〉

=

〈
J&GR

[
Lx
xr

]
,Lx

〉
+ 〈G∗

RLx, SG∗
RLx〉 − 〈G∗

RLx, SG∗
RLx〉

=

〈
J&GR

[
Lx
xr

]
,Lx

〉
+ 〈G∗

RLx,−xr〉 − 〈G∗
RLx, SG∗

RLx〉

=

〈[
J&GR

−G∗
R 0

] [
Lx
xr

]
,

[
Lx
xr

]〉
− 〈G∗

RLx, SG∗
RLx〉

=

〈
Aext

[
x
xr

]
,

[
x
xr

]〉

L̃
− 〈G∗

RLx, SG∗
RLx〉

≤ − 〈G∗
RLx, SG∗

RLx〉 ≤ 0, (6.88)

where in the third step we used xr = −SG∗
RLx and in the last step we used (6.86)

and the fact that S is coercive, see (6.5).

Next we prove the range condition on Ag . That is, for a λ > 0 we have to show
that for any given f ∈ X we can find an x ∈ D(Ag) such that

f = (λI −Ag)x.

In order to prove this, let

P =

[
0 0
0 S−1 − λI

]
.

Since S is coercive, we can find some λ > 0 such that S−1 − λI ≥ 0. Thus we
can assume that P is a nonnegative operator. It thus follows from Corollary 3.3
of [Paz83] that Aext − P generates a contraction semigroup. This in turn implies

(by the Lümer-Phillips theorem) that ran (λI −Aext + P ) = X̃ . Thus, given any

168



6.5. A larger class of systems

[
f
0

]
∈ X̃ we can find [ x

xr
] ∈ D(Aext) such that

[
f
0

]
= (λI−Aext + P )

[
x
xr

]
=

(
λ

[
L−1 0
0 0

]
+

[
−J&GR

G∗
R S−1

])[
Lx
xr

]

⇒ f = λx− J&GR

[
Lx
xr

]
and xr = −SG∗

RLx

⇒ f = λx− J&GR

[
Lx

−SG∗
RLx

]
. (6.89)

Since [ x
xr

] =
[ x
−SG∗

RLx

]
∈ D(Aext), it is easy to see that x ∈ D(Ag). Then,

from (6.89) we can see that Ag satisfies the range condition. Concluding, we
see that Ag generates a contraction semigroup.

Once we have parameterized the set of boundary conditions for which Ag gen-
erates a contraction semigroup we can define boundary control systems easily.
Using this it is easy to see that the proof of the theorem below follow the same
ideas as the proof of Theorem 6.11. Also note that D(Ag) ⊂ H(Ag, (a, b))

n and
that is why H(Ag, (a, b))

n was defined as the maximal domain where the bound-

ary port operator
[

g̃f∂

g̃e∂

]
is well-defined.

Theorem 6.31: Let r be the dimension of g̃f∂ and g̃e∂ according to Defini-
tion 6.28, and let W be a r × 2r matrix. If W has full rank and satisfies
WΣWT ≥ 0, where Σ is defined in (2.9), then the system (see Remark 6.30)

∂x

∂t
(t) = (J − GRSG∗

R)Lx(t) (6.90)

with input

u(t) = Bx(t) = W

[
g̃f∂,Lx(t)
g̃e∂,Lx(t)

]
(6.91)

is a boundary control system on X . Furthermore, the operator Ag = (J −
GRSG∗

R)L with domain

D(Ag) =

{
x ∈ X

∣∣∣
[

Lx
−SG∗

RLx

]
∈ H(Je, (a, b))

n+m,

[
g̃f∂,Lx

g̃e∂,Lx

]
∈ kerW

}
.

(6.92)
generates a contraction semigroup on X .

Let W̃ be a full rank matrix of size r × 2r with
[

WfW ] invertible. If we define the
linear mapping C : H(Ag, (a, b))

n → R
r as,

Cx(t) := W̃

[
g̃f∂,Lx(t)
g̃e∂,Lx(t)

]
(6.93)
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6. Systems with Dissipation

and the output as
y(t) = Cx(t), (6.94)

then for u ∈ C2(0,∞; Rr), Lx(0) ∈ H(Ag, (a, b))
n, and Bx(0) = u(0) the follow-

ing balance equation is satisfied:

1

2

d

dt
‖x(t)‖2

L =
1

2

[
uT (t) yT (t)

]
PW,W̃

[
u(t)
y(t)

]
− 〈G∗

RLx(t), SG∗
RLx(t)〉

≤ 1

2

[
uT (t) yT (t)

]
PW,W̃

[
u(t)
y(t)

]
, (6.95)

where

P−1

W,W̃
=

[
WΣWT WΣW̃T

W̃ΣWT W̃ΣW̃T

]
. (6.96)

Furthermore, the invertibility of
(

WΣW T WΣfW TfWΣW T fWΣfW T

)
is equivalent to the invert-

ibility of
[

WfW ].
Example 6.32 (Swelling porous elastic soils) The model studied here provides
the basis for the treatment of various practical problems in the field of swelling,
oil explanations, slurred and consolidation problems, see [Eri94]. This formu-
lation belongs to a mix of theories for porous elastic solids filled with fluid.
Heat conduction is included. The field equations of the linear theory of swelling
porous elastic soils in the case of fluid saturation are (see [Qui02])

ρw
∂2w

∂t2
= a1

∂2w

∂z2
+ a2

∂2u

∂z2
+ β1

∂T

∂z
− ξ

(
∂w

∂t
− ∂u

∂t

)
+ µw

∂3w

∂z2∂t

ρu
∂2u

∂t2
= a2

∂2w

∂z2
+ a3

∂2u

∂z2
+ β2

∂T

∂z
+ ξ

(
∂w

∂t
− ∂u

∂t

)
(6.97)

c
∂T

∂t
= β1

∂2w

∂z∂t
+ β2

∂2u

∂z∂t
+ k

∂2T

∂z2
,

where w and u represent the displacements of fluid and solid elastic materials at
space position z ∈ (a; b) and time t > 0, respectively. T represents the tempera-
ture. The constants ρw, ρu > 0 are the densities of each constituent and c is the
heat capacity. The parameters a1, a2, a3, β1, β2, ξ, µw and k are the constitutive
constants. The energy function can be described by

E(t) =
1

2

∫ b

a

[
ρw

(
∂w

∂t

)2

+ ρu

(
∂u

∂t

)2

+a1

(
∂w

∂z

)2

+ 2a2
∂w

∂z

∂u

∂z
+ a3

(
∂u

∂z

)2

+ c T 2

]
dz. (6.98)
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This model can be written as an evolution equation by selecting the state vari-
ables

x1 =
∂w

∂z
, x2 = ρw

∂w

∂t
, x3 =

∂u

∂z
, x4 = ρu

∂u

∂t
, x5 = c T.

Using this, equations (6.97) can be rewritten as (with an abuse of notation)

∂

∂t




x1

x2

x3

x4

x5




︸ ︷︷ ︸
x

=




0 1 0 0 0
1 0 0 0 β1

0 0 0 1 0
0 0 1 0 β2

0 β1 0 β2 0



∂

∂z

︸ ︷︷ ︸
J




a1 x1 + a2x3

ρ−1
w x2

a2 x1 + a3x3

ρ−1
u x4

c−1x5




−




0 0 0 0 0
0 (−µw∂

2
z + ξ) 0 −ξ 0

0 0 0 0 0
0 −ξ 0 ξ 0
0 0 0 0 −k∂2

z




︸ ︷︷ ︸
GRSG∗

R




a1 x1 + a2x3

ρ−1
w x2

a2 x1 + a3x3

ρ−1
u x4

c−1x5




︸ ︷︷ ︸
L x

. (6.99)

From this we can see that

GR =




0 0 0
∂z −1 0
0 0 0
0 1 0
0 0 ∂z



, S =



µw 0 0

0 ξ 0
0 0 k


 , G∗

R =




0 −∂z 0 0 0
0 −1 0 1 0
0 0 0 0 −∂z


 ,

and

L =




a1 0 a2 0 0
0 ρ−1

w 0 0 0
a2 0 a3 0 0
0 0 0 ρ−1

u 0
0 0 0 0 c−1



.

Typically, it is assumed that [ a1 a2
a2 a3

] is positive definite, see [WG06] or [Qui02], so
that L is coercive. Also note that N = 1, n = 5, m = 3, r = 6. In this case we

have that the extended operator Je =
[

J GR

−G∗
R 0

]
is given by

Je ee =




∂ze2

∂z(e1+e6)+β1∂ze5−e7

∂ze4

∂ze3+β2∂ze5+e7

β1∂ze2+β2∂ze4+∂ze8

∂ze2
e2−e4

∂ze5


 , ee =




e1
e2
e3
e4
e5
e6
e7
e8


 . (6.100)
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From this it is easy to see that the space H(Ag, (a, b))
5 in (6.81) is given by

{
x ∈ X

∣∣∣
(ρ−1

w x2), (ρ−1
u x4), (c−1x5),

(
k∂z(c

−1x5)
)
∈ H1(a, b);

(a2 x1 + a3x3),
(
a1 x1 + a2x3 + µw∂z(ρ

−1
w x2)

)
∈ H1(a, b)

}
. (6.101)

The corresponding matrices Q and Q̃ appearing in Theorem 6.15 are

Q =




0 1 0 0 0 0 0 0
1 0 0 0 β1 1 0 0
0 0 0 1 0 0 0 0
0 0 1 0 β2 0 0 0
0 β1 0 β2 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0




⇒ Q̃ =




0 2 0 0 0 0
2 0 0 0 β1 0
0 0 0 1 0 0
0 0 1 0 β2 0
0 β1 0 β2 0 1
0 0 0 0 1 0



,

with M = [v1, e2, e3, e4, e5, e8], where v1 = [1, 0, 0, 0, 0, 1, 0, 0]T and ei ∈
R

8, i = {2, 3, 4, 5, 8}, is the vector containing 1 in its i-th component and zero
elsewhere. Thus MQ is given by, see Theorem 6.15,

MQ =




1
2 0 0 0 0 1

2 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1



.

Next we proceed to define the boundary port-variables. First notice that

−SG∗
RLx =




µw∂z(ρ
−1
w x2)

ξ(ρ−1
w x2 − ρ−1

u x4)
k∂z(c

−1x5)


 ,

and that the second component of −SG∗
RLx is dropped when

[
Lx

−SG∗
RLx

]
is pre-

multiplied byMQ. This is because this component is not needed in the definition
of the port-variables, since it is already included in Lx. For this selection of M
the port-variables are (see Definition 6.28)

[
g̃f∂,e

g̃e∂,e

]
=

1√
2




2e2(b)−2e2(a)(
e1+µw∂z(e2)

)
(b)+β1e5(b)−

(
e1+µw∂z(e2)

)
(a)−β1e5(a)

e4(b)−e4(a)
e3(b)+β2e5(b)−e3(a)−β2e5(a)

β1e2(b)+β2e4(b)+k∂z(e5)(b)−β1e2(a)−β2e4(a)−k∂z(e5)(a)
e5(b)−e5(a)

1
2

(
e1+µw∂z(e2)

)
(b)+ 1

2

(
e1+µw∂z(e2)

)
(a)

e2(b)+e2(a)
e3(b)+e3(a)
e4(b)+e4(a)
e5(b)+e5(a)

k∂z(e5)(b)+k∂z(e5)(a)




, (6.102)
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where e = Lx. Typical boundary conditions for this system are

∂w

∂t
(a) =

∂w

∂t
(b) = 0,

∂u

∂t
(a) =

∂u

∂t
(b) = 0, T (a) = T (b) = 0,

or equivalently (ρ−1
w x2)(a) = (ρ−1

w x2)(b) = 0, (ρ−1
u x4)(a) = (ρ−1

u x4)(b) = 0, and
(c−1x5)(a) = (c−1x5)(b) = 0. A corresponding W which gives the boundary
conditions (inputs) is given by

W =
1√
2




1
2 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 1 0

− 1
2 0 0 0 0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 −1 0 0 0 0 1 0




⇒ WΣWT = 0.

With this matrix we obtain

W

[
g̃f∂,e

g̃e∂,e

]
=




ρ−1
w x2(b)
ρ−1

u x4(b)
c−1x5(b)
ρ−1

w x2(a)
ρ−1

u x4(a)
c−1x5(a)



.

Note that in this case the domain of the semigroup generator Ag (see Theo-
rem 6.31 and equations (6.99) and (6.101)) is given by

D(Ag) =

{
x ∈ H(Ag, (a, b)

5
∣∣∣
[

ρ−1
w x2(b)

ρ−1
u x4(b)

c−1x5(b)

]
=

[
ρ−1

w x2(a)

ρ−1
u x4(a)

c−1x5(a)

]
= 0

}

and it satisfies for all x ∈ D(Ag)

〈Ag x, x〉L = −µw

∥∥∂z(ρ
−1
w x2)

∥∥2 − ξ
∥∥(ρ−1

w x2 − ρ−1
u x4)

∥∥2 − k
∥∥∂z(c

−1x5)
∥∥2
.

Observe that in this case we have an equality in the equation above. This follows
from equation (6.30) and because WΣWT = 0 since this gives 〈Aext x̃, x̃〉L̃ = 0,
see Theorem 6.23. ∗

6.6. Stability

In this section we show some results that can be useful to prove stability of the
class of systems studied in this chapter. First note that some of the results pre-
sented in Chapter 4 and Section 5.2 also hold for first-order systems with dissi-
pation since the no assumption is done on the matrix A0 (or P0 or G0). The next
result is only valid for systems with dissipation.
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Theorem 6.33: Consider the class of systems described in Theorem 6.31. If the
operator GR satisfies

〈G∗
R Lx, SG∗

R Lx〉 ≥ ε ‖x‖2
L+

κ

2

[
0 yT

]
PW,W̃

[
0
y

]
, ∀x ∈ D(Ag), (6.103)

for ε > 0 and κ ≤ 1, then the system is exponentially stable.

PROOF: In order to prove exponential stability, we first let u(t) = 0 for t ≥ 0. This
implies that the state variable x(t) ∈ D(Ag). This together with equation (6.95)
gives that the energy of the system satisfies

1

2

d

dt
‖x(t)‖2

L =
1

2

[
0 yT (t)

]
PW,W̃

[
0
y(t)

]
− 〈G∗

RLx(t), SG∗
RLx(t)〉 .

If inequality (6.103) holds then the equation above becomes

d

dt
‖x(t)‖2

L ≤− 2ε ‖x(t)‖2
L + (1 − κ)

[
0 yT (t)

]
PW,W̃

[
0
y(t)

]
.

Now observe that
[

0 yT (t)
]
PW,W̃

[
0

y(t)

]
≤ 0, since this term corresponds to

the expression 〈Aextx, x〉, see (6.30), and Aext satisfies 〈Aextx, x〉 ≤ 0, see (6.28).
Altogether gives

d

dt
‖x(t)‖2

L ≤ −2ε ‖x(t)‖2
L ,

provided that κ ≤ 1. Thus,

‖x(t)‖2
L ≤ e−2ε t ‖x(0)‖2

L ,

which proves the exponential stability.

Example 6.34 Here we continue with Example 6.12 and we show that the fixed
bed reactor with boundary conditions (6.43) is exponentially stable. We need to
show that 〈G∗

R Lx, SG∗
R Lx〉 =

〈
∂x
∂z ,D

∂x
∂z

〉
satisfies the condition in Theorem 6.33.

By using the boundary conditions we obtain

〈G∗
R Lx, SG∗

R Lx〉 =

〈
∂x

∂z
,D

∂x

∂z

〉
= −

〈
x,D

∂2x

∂z2

〉
− U |x(a)|2

≥
〈
x,−D∂

2x

∂z2

〉
−
(
U |x(a)|2 + U |x(b)|2

)

=

〈
x,−D∂

2x

∂z2

〉
−
(

1

U
‖y‖2

R

)
, (6.104)

174



6.6. Stability

where in the last step we used (6.44) together with the boundary condi-

tions (6.43). The operator −D ∂2x
∂z2 (with domain D(Ag)) is positive and it has the

bounded inverse

(
−D ∂2

∂z2

)−1

f(z) = −
(

1

D
(z − a) +

1

U

)∫ b

a

f(τ) dτ +
1

D

∫ z

a

(z − τ)f(τ) dτ.

This implies that −D ∂2x
∂z2 is coercive. Using this in the inequality (6.104) yields

〈G∗
R Lx, SG∗

R Lx〉 ≥ ε ‖x‖2 − 1

U
‖y‖2

R
.

This is the inequality (6.103) with κ = 1, compare with (6.45). Therefore the
system is exponentially stable by Theorem 6.33. ∗
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Chapter 7

Power-Conserving Interconnection of
Dirac Structures

In the previous chapters we studied the notion of Dirac structures and the re-
lation with port-Hamiltonian systems (PHS). Depending on the selection of this
Dirac structure we have defined energy preserving systems as well as dissipa-
tive systems. In this chapter we focus on the interconnection of these type of
systems and we shall see the important role that the Dirac structure plays when
doing that. In particular, we show that the interconnection of PHS is done by
interconnecting the corresponding Dirac structures of the systems. The total
PHS is then obtained from this new Dirac structure together with the sum of
the Hamiltonians of the systems being interconnected. This property is useful
when modeling systems using a modular approach where the system is thought
of as the interconnection of smaller subsystems. This simplifies the modeling
process since smaller subsystems are easier to model. This also allows to rep-
resent complex systems with components from different physical domains (e.g.
mechanical, electrical, hydraulic) in a unified way. Furthermore, because of the
modularity, the modeling process can be performed in an iterative manner, grad-
ually refining the model by adding or changing other subsystems. Interconnec-
tion is also important from a control point of view, since implementing a control
law or controlling a system is usually done by interconnecting a given system
with an external device (controller) via the external variables (ports).

In this chapter we define what a power-conserving interconnection defined on
the space of external variables is. We study the composition of the class of Dirac
structures introduced in Chapters 2 and 6 and show that the power-conserving
composition of these Dirac structures is again a Dirac structure and hence the
interconnected systems is a PHS. Once we have the tools to study the compo-
sition of Dirac structures we can proceed to define BCS for the interconnected
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systems. We emphasize that the class of Dirac structures studied in this chapter
are related to the skew-symmetric operators studied in Chapter 2. This chapter is
mainly intended to give ideas on how to deal with interconnected systems and
at the same time this ideas allow us to extend some results to a larger class of
systems. Also, it shows how the general theory of the previous chapters can be
applied by modeling in a modular way as port-Hamiltonian systems. We do not
give results on general Dirac structures and the interconnection is restricted to
be power-conserving. For more general cases we refer to [KvdSZ06] and [Gol02]
and the references therein.

7.1. Port-variables and Dirac structures

As mentioned in the introduction, in this section we study the composition of a
class of Dirac structures. Recall from Chapter 2 and 6 that the Dirac structure was
fundamental in the definition of PHS. In General, a port-Hamiltonian system can
be represented as in Figure 7.1. Central in the definition is the Dirac structure,
denoted in Figure 7.1 by DJ . This Dirac structure links the various port-variables
in such a way that the total power associated with the port-variables is zero.

f∂

e∂

erfr

eh

fh

fI eI

H d

I

R

DJ

Figure 7.1.: Port-Hamiltonian system.

Note that the port-variables in Figure 7.1 have been split into different parts. First
there are two internal ports: one, denoted by H, corresponds to energy storage
and the other one, denoted by R, corresponds to internal energy-dissipation.
The other two ports, are the external ports: the one denoted by d contains the
boundary port-variables, and the other one, denoted by I, corresponds to the
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7.1. Port-variables and Dirac structures

distributed ports used to interconnect the system along the spatial domain. The
external ports are used by the system to interact either with the environment or
with other systems.

The port-variables associated with the energy storage port are denoted by
(fh, eh) (or simply (f, e) when there might not be confusion with other ports,
as it was done in Chapters 2 and 6). They are interconnected to the energy
storage of the system which is defined by the state space X together with the
Hamiltonian function H : X → R denoting the energy. The interconnection of
the energy storing elements to the energy storage port is done by setting (see
Section 2.2)

fh = ẋ, eh =
∂H

∂x
(x).

The resistive port corresponds to energy dissipation (due to friction, resistance,
heat transfer, etc.) and its port-variables are denoted by (fr, er). This is the type
of ports used in Chapter 6 to deal with systems with dissipation. Finally, the
port-variables associated with the boundary and distributed port will be denoted
by (f∂ , e∂) and (fI , eI), respectively. These are the variables that the system uses
to interact with the environment or with other systems. Part of these ports could
be used for control purposes. See [Pas06], [vdS05], [vdSM02], and [MvdSM04]
and the references therein for more details on these type of ports and its usage.

In Chapter 2 we studied Dirac structures related to the skew-symmetric operator
J given by (2.2). This clearly corresponds to a system where only energy storage
and boundary ports are present. In Chapter 6 the resistive port was added and
thus we considered the skew-symmetric operator Je described in Section 6.1 as
the operator related to the corresponding Dirac structure. In this chapter we add
the distributed port and consider the interconnection of the resulting systems. In
other words, we start by studying the Dirac structure related to the operator Je

described by

Je =




J GR GI

−G∗
R 0 0

−G∗
I 0 0


 , D(Je) =




HN (a, b,Rn)
HN (a, b,Rm1)
L2(a, b)

m2


 , (7.1)

where J , GR, and GI are given by given by

J x =

N∑

i=0

Pi
∂ix

∂zi
,

GRx =

N∑

i=0

Gi
∂ix

∂zi
, G∗

Rx =

N∑

i=0

(−1)iGT
i

∂ix

∂zi
, (7.2)

GI ∈ L(L2(a, b)
m2 , L2(a, b)

n),
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7. Power-Conserving Interconnection of Dirac Structures

with Gi ∈ R
n×m1 , Pi ∈ R

n×n, i = {0, 1, . . . , N}, and n > 0, m1 ≥ 0, m2 ≥ 0.
Furthermore, these matrices satisfy

Pi = (−1)i+1PT
i , i = 0, 1, . . . , N. (7.3)

Here, G∗
R is the formal adjoint of GR and similarly for G∗

I . Again, note that the as-
sumption imposed on the matrices Pi means that J is formally skew symmetric.

Remark 7.1. Note that here we assume that GI is a bounded operator. However,
most of the results presented in this chapter also hold for differential operators
of the same type as GR. We restrict GI to be bounded for the sake of simplicity
and clarity. Furthermore, this assumption is enough for most applications. ♣

It is now easy to see, from Section 6.2, that the following result holds.

Proposition 7.2: The operator Je defined by equations (7.1)–(7.3) is formally
skew-symmetric and can be written as:

Je



eh

er

eI


 =




P0 G0 GI

−GT
0 0 0

−G∗
I 0 0





eh

er

eI


+

N∑

i=1

[
Pi Gi

(−1)(i+1)GT
i 0

]

︸ ︷︷ ︸ePi

∂i

∂zi

[
eh

er

]

(7.4)
where P̃i ∈ R

(n+m1)×(n+m1) satisfies

P̃i =

[
Pi Gi

(−1)(i+1)GT
i 0

]
= (−1)i+1

[
Pi Gi

(−1)i+1GT
i 0

]T

= (−1)i+1P̃T
i .

(7.5)

♥

Following the representation of Je given by (7.4) it follows from Theorem 6.15
that the corresponding Stokes theorem applied to this Je is

Theorem 7.3: Consider the operator Je defined by (7.1)–(7.3) and let r be the
rank of Q given by (6.11) and M be an (n +m1)N × r matrix whose columns
span the range of Q. Then for any two functions e1, e2 ∈ HN (a, b)n+m1+m2

with ei = [eh,i, er,i, eI,i]
T , i = {1, 2}, we have

∫ b

a

(Jee1)
T (z) e2(z) dz +

∫ b

a

eT
1 (z)(Jee2)(z) dz

=

〈[
MQ 0
0 MQ

]
τ

([
eh,1

er,1

])
,

[
Q̃ 0

0 −Q̃

] [
MQ 0
0 MQ

]
τ

([
eh,2

er,2

])〉

R2r

,

(7.6)

where Q̃ = MT QM , MQ = (MTM)−1MT , and τ(·) is the operator described
in Definition 2.5.
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7.1. Port-variables and Dirac structures

By the assumption on GI and the theorem above it is easy to see that the bound-
ary port-variables corresponding to the operator Je in (7.1) are also described by
Definition 6.17, i.e.,

[
f̃∂,e

ẽ∂,e

]

|D(Je)

= R̃ext

[
MQ 0
0 MQ

]
τ

([
eh

er

])
, e = [eT

h , e
T
r , e

T
I ]T , (7.7)

where the matrices R̃ext and MQ are described in Section 6.5. This follows since
the matrix Q appearing in the Stokes theorem is the same that appears in Sec-

tion 6.5. We also know, from Theorem 6.19, that in the case the matrix P̃N in (7.5)

is singular the boundary port operator
[

f̃∂

ẽ∂

]
can be extended to the larger space

described in (6.56), i.e.,

H(Je, (a, b))
n+m1+m2 =

{
e ∈ L2(a, b)

n+m1+m2 | Je e ∈ L2(a, b)
n+m1+m2

}
.

(7.8)
Observe that whenever P̃N is nonsingular H(Je, (a, b))

n+m1+m2 equals D(Je)
in (7.1). Next we define the flow and effort space as follows

F i = F i
h ×F i

r ×FI ×F i
∂ ,

E i = E i
h × E i

r × EI × E i
∂ ,

F i
h = E i

h = L2(a, b)
ni

, F i
r = E i

r = L2(a, b)
mi

1 ,

FI = EI = L2(a, b)
m2 , F i

∂ = E i
∂ = R

ri

.

(7.9)

Thus, the bond space is given by B = F i × E i. By the selection of the port-
variables, see (7.7), and Theorem 6.21 it is easy to see that the following result
holds.

Theorem 7.4: Consider the skew-symmetric operator Je defined by (7.1)–(7.3).
Let the boundary port-variables be described as in Definition 6.17, see (7.7).
Then, the subspace DJe

of B defined by

DJe
=








f
f∂

e
e∂


 ∈ B

∣∣∣∣∣∣∣∣∣

f = [fT
h , f

T
r , f

T
I ]T , e = [eT

h , e
T
r , e

T
I ]T ,

e ∈ H(Je, (a, b))
n+m1+m2 , Je e = f,[

f∂ , e
e∂ , e

]

|D(Je)

= R̃ext

[
MQ 0
0 MQ

]
τ

([
eh

er

])





is a Dirac structure with respect to (6.55), where R̃ext, MQ, and τ(·) are given
according to Definition 6.17.
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7. Power-Conserving Interconnection of Dirac Structures

7.2. Interconnection of Dirac structures

Recall from Chapter 6 that we interconnected the resistive port with a resistive
relation in order to deal with systems with dissipation. In a similar manner we
can also view the interconnection of the Dirac structures through the spatial do-
main, in which case we replace the resistive relation with another Dirac structure.
Therefore, we consider two Dirac structures as described in Theorem 7.4; that is,
let the Dirac structures Di, i = {1, 2}, be described by

Di =








f i

f i
∂

ei

ei
∂


 ∈ Bi

∣∣∣∣∣∣∣∣∣∣∣∣∣

f i =



f i

h

f i
r

f i
I


 , ei =



ei
h

ei
r

ei
I


 ,

ei ∈ H(J i
e, (a, b))

n+m1+m2 , J i
e e

i = f i,
[
f∂,ei

e∂,ei

]

|D(J i
e )

= R̃i
ext

[
M i

Q 0

0 M i
Q

]
τ

([
ei
h

ei
r

])





,

(7.10)
with

J i
e =




Ji GRi
GIi

−G∗
Ri

0 0
−G∗

Ii
0 0


 , D(J i

e ) =




HN (a, b,Rni

)

HN (a, b,Rmi
1)

HN (a, b,Rm2)


 . (7.11)

As mentioned earlier the interconnection will take place through the spatial do-

main, that is, through the distributed port
[

fi
I

ei
I

]
, see Figure 7.2.

e1∂e
1
∂

f1
∂f
1
∂

f1
hf
1
h e1he

1
h

f1
If
1
I

e1Ie
1
I

e1re
1
rf1

rf
1
r

D1D1
e2∂e
2
∂

f2
∂f
2
∂

f2
hf
2
h e2he

2
h

f2
If
2
I

e2Ie
2
I

e2re
2
rf2

rf
2
r

D2D2

Figure 7.2.: Interconnection through the distributed port.

We want to interconnect the Dirac structures D1 and D2 through the ports
[

fi
I

ei
I

]
,
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i = {1, 2}, see Figure 7.2, as follows

f1
I = σe2I , e1I = −σf2

I , where σ is either 1 or −1. (7.12)

Observe that this is a power conserving interconnection since we have f1
I e

1
I +

f2
I e

2
I = 0. We stress that in this chapter we only consider this type of power

conserving interconnection, for a more thorough analysis of interconnection of
Dirac structures see [KvdSZ06], [Pas06], and [Gol02] and the references therein.

Using (7.12) and the definition (7.10) restricted to D(J i
e ) with J i

e given by (7.11)
we obtain

f1
I = − G∗

I1
e1h = σe2I

f2
I = − G∗

I2
e2h = −σe1I

f1
h = J1e

1
h + GR1

e1r+GI1
e1I = J1e

1
h + GR1

e1r + σGI1
G∗

I2
e2h

f2
h = J2e

2
h + GR2

e2r+GI2
e2I = J2e

2
h + GR2

e2r − σGI2
G∗

I1
e1h.

From this and (7.10) ( restricted to D(J i
e )) we see that the new interconnected

structure D = D1||D2 is related to the new operator J̃e described by




f1
h

f2
h

f1
r

f2
r


 =




J1 σGI1
G∗

I2
GR1

0
−σGI2

G∗
I1

J2 0 GR2

−G∗
R1

0 0 0
0 −G∗

R2
0 0




︸ ︷︷ ︸eJe




e1h
e2h
e1r
e2r


 , D(J̃e) =




HN (a,b)n1

HN (a,b)n2

HN (a,b)m1
1

HN (a,b)m2
1




(7.13)
By now it is easy to see that J̃e is a skew-symmetric operator (see e.g. Proposi-
tion 7.2) and by using the representation of Ji and GRi

given in (7.2)–(7.3), i.e.,

Jix =

N∑

k=0

Pi,k
∂kx

∂zk
, GRi

x =

N∑

k=0

Gi,k
∂kx

∂zk
, i = {1, 2},

we can see that J̃e can be represented as

J̃e




e1h
e2h
e1r
e2r


 =




P1,0 σGI1
G∗

I2
G1,0 0

−σGI2
G∗

I1
P2,0 0 G2,0

−GT
1,0 0 0 0

0 −GT
2,0 0 0







e1h
e2h
e1r
e2r


 (7.14)

+

N∑

k=1




P1,k 0 G1,k 0
0 P2,k 0 G2,k

(−1)k+1GT
1,k 0 0 0

0 (−1)k+1GT
2,k 0 0




︸ ︷︷ ︸
Ψ̃k

∂k

∂zk




e1h
e2h
e1r
e2r


 .
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Related to this operator we define

Qe =




Ψ̃1 Ψ̃2 Ψ̃3 · · · Ψ̃N−1 Ψ̃N

−Ψ̃2 −Ψ̃3 −Ψ̃4 · · · −Ψ̃N 0
...

. . .
. . .

. . .
...

(−1)N−1Ψ̃N 0 · · · · · · 0


 , (7.15)

which is the Q matrix appearing when Stokes Theorem is applied to J̃e, see e.g.
Theorem 7.3. In fact, Stokes theorem applied to this operator gives

Theorem 7.5: Consider the skew-symmetric operator J̃e defined by (7.13) with

domain D(J̃e) = HN (a, b)n1+n2+m1
1+m2

1 , see (7.11). Let r be the rank of Qe

given by (7.15) and M be an (n1 + n2 +m1
1 +m2

1)N × r matrix whose columns

span the range of Qe. Then for any two functions e1, e2 ∈ D(J̃e) with ei =[
(e1h)T , (e2h)T , (e1r)

T , (e2r)
T
]T

, i = {1, 2}, we have

∫ b

a

(J̃ee1)
T (z) e2(z) dz +

∫ b

a

eT
1 (z)(J̃ee2)(z) dz

=



[
eT
1 (z), . . . , dN−1

dzN−1 e
T
1 (z)

]
MT

Q Q̃MQ




e2(z)
...

dN−1

dzN−1 e2(z)







b

a

=

〈[
MQ 0
0 MQ

]
τ (e1) ,

[
Q̃ 0

0 −Q̃

] [
MQ 0
0 MQ

]
τ (e2)

〉

R2r

, (7.16)

where Q̃ = MT QeM , MQ = (MTM)−1MT , and τ(·) is the operator described
in Definition 2.5.

From this it is easy to see that the corresponding boundary port-variables, which
can be extended to a larger space, are described by Definition 6.17, i.e., (with the
notation of Theorem 7.5)

[
f̃∂,e

ẽ∂,e

]

|D( eJe)

= R̃ext

[
MQ 0
0 MQ

]
τ (e) , e =

[
(e1h)T , (e2h)T , (e1r)

T , (e2r)
T
]T
,

(7.17)
where the matrix R̃ext is described in Section 6.5 and is given by

R̃ext =
1√
2

[
Q̃ −Q̃
I I

]
. (7.18)
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It is worth noticing that these port-variables are just a rearrangement of the port-
variables corresponding to the Dirac structures D1 and D2. This follows from the
following lemma.

Lemma 7.6: Consider the port-variables of the Dirac structures D1 and D2 de-

scribed by (7.10) and the port-variables corresponding to the operator J̃e given
by (7.17)–(7.18). Then, there exist a unitary matrix U such that

UT Qe U =

[
Q1 0
0 Q2

]

and for e =
[
(e1h)T , (e2h)T , (e1r)

T , (e2r)
T
]T

UT




e(z)
...

dN−1

dzN−1 e(z)


 =




e1h
e1r
...

dN−1

dzN−1 e
1
h

dN−1

dzN−1 e
1
r

e2h
e2r
...

dN−1

dzN−1 e
2
h

dN−1

dzN−1 e
2
r




. ♥

PROOF: Just let U be given by

U =




I 0 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 . . . 0 0 I 0 . . . 0 0 0 0
0 I 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 . . . 0 0 0 I . . . 0 0 0 0

...
...

...
0 0 0 0 . . . I 0 . . . 0 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 . . . 0 0 0 0 . . . I 0 0 0
0 0 0 0 . . . 0 I . . . 0 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 I 0 0

...
...

...
0 0 0 0 . . . 0 0 . . . 0 I 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 I




,

where each entry multiplies an entry in the matrix Ψ̃k appearing in (7.14) and
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equation (7.15). For instance, in the first order case, i.e., N = 1, we have

UTQe U =




I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I







P1,1 0 G1,1 0
0 P2,1 0 G2,1

GT
1,1 0 0 0
0 GT

2,1 0 0







I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I




=




P1,1 G1,1 0 0
GT

1,1 0 0 0
0 0 P2,1 G2,1

0 0 G2,1 0


 =

[
Q1 0
0 Q2

]
.

Now we can prove that the interconnected structure is indeed a Dirac structure.

Since we know that J̃e is a skew symmetric operator, then we can apply the
results of Section 6.5. In particular, from Theorem 6.21, we have the following
results.

Theorem 7.7: Consider the skew-symmetric operator J̃e defined by (7.13). Let
the boundary port-variables be described as above, see (7.17), and define the

bond space as B̃ = F̃ × Ẽ with F̃ = Ẽ = F1
h ×F2

h ×F1
r ×F2

r ×F1
∂ ×F2

∂ , see (7.9).

Then, the subspace DJe
of B̃ defined by

DJe
=








f
f∂

e
e∂


 ∈ B̃

∣∣∣∣∣∣∣∣∣∣∣∣

f =
[
(f1

h)T , (f2
h)T , (f1

r )T , (f2
r )T
]T
,

e =
[
(e1h)T , (e2h)T , (e1r)

T , (e2r)
T
]T
,

e ∈ H(J̃e, (a, b))
(n1+n2+m1

1+m2
1), J̃e e = f,[

f̃∂ , e
ẽ∂ , e

]

|D( eJe)

= R̃ext

[
MQ 0
0 MQ

]
τ (e)





is a Dirac structure with respect to (2.14), where R̃ext, MQ, and τ(·) are given
according to Definition 6.17.

7.3. Boundary control systems: Examples

Now that we have that the power-conserving interconnection of Dirac structures
is again a Dirac structure, it is easy to parameterize boundary control systems out
of this interconnected structures, even if the system has dissipation. In fact, the
results presented in Section 6.5 hold for these interconnected systems, since the
only requirement is that the differential operator related to the Dirac structure
is skew-symmetric. The following examples may help to clarify the ideas. For
more details see Section 6.5.
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Example 7.8 (Suspension system) Consider a suspension system described
by two strings (or two beams for more accurate model) connected in parallel
through a distributed spring. This system can be described as the interconnec-
tion of three subsystems, i.e., two vibrating strings and one distributed spring.
For the sake of completeness we follow the modeling process of the strings so
that the physical meaning of the distributed port-variables is clear.

Model of the strings: Consider a flexible string held stationary at both ends
and free to vibrate transversely subject to the restoring forces due to tension in
the string and to an external force F (z, t). Our hypothesis is that the string is
under constant tension, T , established when it was stretched between its fixed
end points. The transverse displacement at position z along the string at time t
is denoted u(z, t).

Ty
Tx

T

z

u(z,t)

Figure 7.3.: Vibrating string.

The tangent to the string at u(z, t) is indicated in the figure. Also shown is trian-
gle with legs Tx (the component of tension along the x-direction), Ty (that parallel
to displacement u) and hypotenuse T (tension in the string). If we suppose that
displacements are small then Tx is approximately equal to T ; but Ty is given by

Ty = T
∂u

∂z
. (7.19)

Define the strain

q(z, t) =
∂u

∂z
. (7.20)

Using this, equation (7.19) becomes

Ty = Tq(z, t). (7.21)
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To mathematically describe the vibrations on the string, we consider all the forces
acting on a small section of the string as shown in Figure 7.4.

T

T

Ty(z+∆z,t)

Ty(z,t)

z z+∆z

∆z F(z,t)

Figure 7.4.: Small segment of the vibrating string.

Essentially, the wave equation is nothing more than Newton’s equation of mo-
tion applied to the string (the change in momentum mutt of a small string seg-
ment is equal to the applied forces). Looking at Figure 7.4 we can see that
the forces acting on the string in the direction perpendicular to the z-axis are
Ty(z + ∆z, t), Ty(z, t)] and ∆zF (z, t). If we now apply Newton’s equation of
motion to the small segment of the string and use (7.21), we obtain

ρ∆z
∂2u

∂t2
(z, t) = [Ty(z + ∆z, t) − Ty(z, t)] − ∆zF (z, t)

∂p

∂t
(z, t) = T

1

∆z
[q(z + ∆z, t) − q(z, t)] − F (z, t) (7.22)

where

p(z, t) = ρ
∂u

∂t
(z, t), (7.23)

ρ is the mass density, m = ρ∆z is the mass, and ρ∆zp(z, t) is the momentum
distribution. By letting ∆z → 0 in equation (7.22) yields

∂p

∂t
= T

∂q

∂z
(z, t) − F (x, t). (7.24)

Observe that from equations (7.20) and (7.23) we obtain

∂q

∂t
=

∂2u

∂z∂t
=

1

ρ

∂p

∂z
. (7.25)
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Furthermore, the energy of the system is given by

H(t) =
1

2

∫ b

a

(
ρ|ut|2 + T |ux|2

)
dz

=
1

2

∫ b

a

(
1

ρ
|p|2 + T |q|2

)
dz. (7.26)

Hence, the state variables are x = [ p
q ] and the effort variables are given by

e =

[
∂pH
∂qH

]
=

[ 1
ρp

Tq

]
, (7.27)

where H is the energy density. Thus, from the equation above, (7.24) and (7.25)
we can see that the vibrating string can be described by

∂

∂t

[
p(z, t)
q(z, t)

]

︸ ︷︷ ︸
x

=

[
0 1
1 0

]
∂

∂z︸ ︷︷ ︸
J

[ 1
ρp

Tq

]
+

[
−1
0

]

︸ ︷︷ ︸
GI

F (z, t). (7.28)

Distributed spring: The spring can be described in port-Hamiltonian form by

∂q

∂t
= es1

− es2
= [ 1︸︷︷︸

G̃I1

, −1︸︷︷︸
G̃I2

]

[
es1

es2

]

fs1
= − es (7.29)

fs1
= es,

where q = z1 − z2 is the elongation of the spring, es1
and es2

are the velocities,
es = kq is the force, k is the constant of the spring and fs1

, fs2
are the forces

applied to the spring. The ports used to interact with the environment are the
forces fs1

and fs2
as well as the velocities es1

and es2
. Note that in this case we

have two ports and thus two corresponding operators G̃Ii
, i = {1, 2}. The energy

of the system is

Hs =
1

2

∫ b

a

kq2 dz. (7.30)

Observe that in this system there is no skew-symmetric operator, i.e., Js = 0,
since this operator represents the canonical coupling between two physical do-
mains: the kinetic and the potential (internal) domain, and in this case we only
have potential energy.

Interconnected system: In summary, the vibrating strings can be described in
port-Hamiltonian form as

∂

∂t

[
pi

qi

]
=

[
0 1
1 0

]
∂

∂z

[ 1
ρi
pi

Tiqi

]
+

[
−1
0

]
eIi

= Jiehi
+ GIi

eIi

fIi
= −GT

Ii
ehi

=
1

ρi
pi, (7.31)
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where

GIi
=

[
−1
0

]
, ehi

=

[ 1
ρi
pi

Tiqi

]
=

[
velocity

stress

]
, pi = ρi

∂ui

∂t
, qi =

∂ui

∂x
,

(7.32)

and eIi
is a force acting along the i-th string, i = {1, 2}. Recall, that we also need

to define boundary conditions. Observe that the ports used to interact with the
environment are the force eIi

and the velocity fIi
, as well as the boundary ports.

Next, we consider the interconnection of the two strings and the spring. Here
we connect the forces eI1

, eI2
, with fs1

, fs2
, as well as the velocities fI1

, fI2
with

es1
, es2

. The connection is as follows (see Figure 7.5)

fI1
= −es1

, eI1
= fs1

, fI2
= −es2

, eI2
= fs2

. (7.33)

e1∂

f1
∂

fh1 eh1

fI1

eI1
fs1

−es1

fq es

fs2

−es2

e2∂

f2
∂

fh2
eh2

fI2

eI2

D1 Ds D2

Figure 7.5.: Interconnection of the system.

This interconnection corresponds to σ = −1, see (7.12), and thus we have a
power-conserving interconnection. It thus follows that the interconnected sys-

tem is described by the operator J̃e given by (7.13) or (7.14) (with GR an empty
operator), i.e.,



fh1

fq

fh2


 =




J1 σ GI1
G̃∗

I1
0

−σ G̃I1
G∗

I1
Js −σ G̃I2

G∗
I2

0 σ GI2
G̃∗

I2
J2





eh1

es

eh2


 ,

where Js = 0. Thus the dynamics of the system can be described (by us-

ing (7.29)–(7.32) on the equation above) with ehi
=
[

ρ−1
i pi

Tiqi

]
, i = {1, 2}, and

es = k q by

∂

∂t




p1

q1
q
p2

q2




=




0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0



∂

∂z



eh1

es

eh2


+




0 0 1 0 0
0 0 0 0 0

−1 0 0 1 0
0 0 −1 0 0
0 0 0 0 0






eh1

es

eh2



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together with the port-variables

[
f̃∂

ẽ∂

]
=




(T1q1)(b) − (T1q1)(a)
(ρ−1

1 p1)(b) − (ρ−1
1 p1)(a)

(T2q2)(b) − (T2q2)(a)
(ρ−1

2 p2)(b) − (ρ−1
2 p2)(a)

(T1q1)(b) + (T1q1)(a)
(ρ−1

1 p1)(b) + (ρ−1
1 p1)(a)

(T2q2)(b) + (T2q2)(a)
(ρ−1

2 p2)(b) + (ρ−1
2 p2)(a)




.

The total energy H is given by the sum of the three elements in the interconnec-
tion, i.e.,

H = H1 + H2 + Hs =
1

2

∫ b

a

(
1

ρ1
|p1|2 + T1|q1|2 +

1

ρ2
|p2|2 + T2|q2|2 + kq2

)
dz.

(7.34)
It thus follows that we can use some of the results of the previous chapters again
to this interconnected system. ∗

It is also possible to interconnect finite-dimensional systems with the boundary
of (1D) infinite-dimensional systems. In these cases it may be better (not always)
to define the input and output of the infinite-dimensional system rather than
working directly with the boundary port-variables. This was the case of Sec-
tion 5.1.2 where first the input and output of the system were selected and the
closed-loop system was studied. The example below shows the main ideas.

Example 7.9 (Transmission line, RLC circuit) As an example consider a trans-
mission line interconnected to two electrical circuits through the boundary. For
simplicity we consider an RLC circuit connected at z = b and a controller con-
nected at z = a, see Figure 7.6.

RLC circuit: Consider an RLC circuit whose port-Hamiltonian model is given
by

d

dt

[
q
φ

]
=

[
0 1
−1 −Rb

] [ 1
Cb
q

1
Lb
φ

]
+

[
0
1

]
vb (7.35)

ιb = [0, 1]

[ 1
Cb
q

1
Lb
φ

]
=

1

Lb
φ,

where q is the charge stored in the capacitor, φ the flux in the inductance, 1
Cb
q

is the voltage, and 1
Lb
φ is the current. Note that the ports corresponds to the

voltage applied to the circuit, vb, and the current in the circuit, ιb. The energy
function is

Eb(t) =
1

2

(
1

Cb
q(t)2 +

1

Lb
φ(t)2

)
. (7.36)
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Transmission line: The model of the transmission line is

∂

∂t

[
x1

x2

]

︸ ︷︷ ︸
x

=

[
0 −1
−1 0

]
∂

∂z︸ ︷︷ ︸
J

[
1
C x1
1
L x2

]
, (7.37)

where x1(z, t) is the charge density, 1
C x1(z, t) is the distributed voltage , x2(z, t)

the flux density, and 1
L x2(z, t) is the distributed current. The energy function is

E(t) =
1

2

∫ b

a

(
1

C
|x1|2 +

1

L
|x2|2

)
dz. (7.38)

Let e =
[ eq

eφ

]
=
[

1
C x1
1
L x2

]
= Lx. In this case the boundary port variables are

[
f∂,x

e∂,x

]
=

√
2

2

[
P1 −P1

I I

] [
e(b)
e(a)

]
=

√
2

2




−eφ(b)+eφ(a)

−eq(b)+eq(a)
eq(b)+eq(a)
eφ(b)+eφ(a)


 =

[
f∂1

f∂2
e∂1
e∂2

]
. (7.39)

As input we select the voltage at both ends, i.e.,

u =
1

L

[
x2(a)
−x2(b)

]
=

[
u1

u2

]
, ⇒ W =

1√
2

(
1 0 0 1
1 0 0 −1

)
. (7.40)

Thus, as outputs we select the currents at the boundary, i.e.,

y = C(Lx) =
1

C

[
x1(a)
x1(b)

]
=

[
y1
y2

]
, ⇒ W̃ =

1√
2

(
0 1 1 0
0 −1 1 0

)
.

(7.41)
It thus follows that the system is an impedance energy preserving system, i.e.,
the energy satisfies d

dtE(t) = u(t)T y(t).

Controller: For simplicity, we assume that the controller can be represented by

d

dt

[
ξ1
ξ2

]
=

[
0 1
−1 −Ra

] [
κ1 ξ1
κ2 ξ2

]
+

[
0
1

]
va (7.42)

ιa = [0, 1]

[
κ1 ξ1
κ2 ξ2

]
= κ2 ξ2,

where κ1 and κ2 are positive constants. Furthermore the energy function is

Ea(t) =
1

2

(
1

C
q(t)2 +

1

L
φ(t)2

)
. (7.43)

Interconnection: Now we can proceed to interconnect the three subsystems. The
interconnection is as follows

−u1 = ιa, y1 = va, and − u2 = ιb, y2 = vb. (7.44)
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Transmission lineController

Rb

Lb

Cb

Figure 7.6.: Interconnected transmission line.

Thus the dynamics of the interconnected system are described by

∂

∂t

[
x
ϑ

]
=

[
J 0
Bα C Aα

] [
Lx
Lϑ ϑ

]
,

(7.45)

u = W

[
f∂,Lx

e∂,Lx

]
= −CαLϑ ϑ

where L = diag{C−1, L−1}, Lϑ = diag{κ1, κ2, C
−1
b , L−1

b }, J is described in
equation (7.37), C (Lx) = y (see (7.41)), x = [ x1

x2
], and

ϑ =




ξ1
ξ2
q
φ


 , Aα =




0 1 0 0
−1 −Ra 0 0

0 0 0 1
0 0 −1 −Rb


 , Bα =




0 0
1 0
0 0
0 1


 = CT

α .

Existence of solutions: To check the existence of solutions we can use similar
ideas to those presented in Section 5.1.2. In general we consider systems of the
form presented in equation (7.45) where J is a skew-symmetric differential oper-
ator as described at the beginning of Chapter 2, L and Lϑ are coercive operators
and Aα ∈ R

η1×η1 , Bα ∈ R
η1×η2 and Cα ∈ R

η2×η1 , see Remark 5.7. Furthermore,
there exist matrices P = PT > 0 and Q such that

P Aα +AT
α P = −QTQ, P Bα = CT

α . (7.46)

As state space we define X̃ = X ⊕ R
η1 where X is described in (2.33). The inner

product on X̃ is defined for wi =
[ xi

ϑi

]
∈ X̃ , i = {1, 2}, as

〈w1, w2〉 eX = 〈x1, x2〉L +
1

2
〈Lϑ P ϑ1, ϑ2〉R

+
1

2
〈P Lϑ ϑ2, ϑ1〉R

, (7.47)

where P is the positive definite matrix found in (7.46).
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Theorem 7.10: Consider the interconnected system (7.45) as described above
where the open-loop distributed parameter system is an impedance energy
preserving system, i.e., d

dtE(t) = u(t)T y(t) holds and the finite-dimensional
system satisfies (7.46). Then, the interconnected system is a boundary control

system on X̃ . Furthermore, the operator Ac defined by

Ac w =

[
J 0
Bα C Aα

] [
Lx
Lϑ ϑ

]
(7.48a)

with domain


w =

[
x
v

]
∈
[

X
R

m

] ∣∣∣Lx ∈ HN (a, b; Rn), and



f∂,Lx

e∂,Lx

Lϑ ϑ


 ∈ ker W̃D



 ,

(7.48b)
where

W̃D =
[
W Cα

]
, (7.48c)

generates a contraction semigroup.

PROOF: The proof follows the same ideas as those presented in the proof of The-

orem 5.8. First we need to prove the existence of the operator R ∈ L(U, X̃). This
follows since the matrix W is full-rank (see the first paragraph in the proof of
Theorem 5.8).

Next we need to prove that Ac generates a semigroup. We will use the Lümer-
Phillips theorem (see [Paz83]). First we prove that 〈Acw,w〉 ≤ 0. Let w = [ x

v ] ∈
D(Ac), then using (7.47) we have (recall that X is a real Hilbert space)

〈Acw,w〉X̃ = 〈J Lx, x〉L +
1

2
〈PAαLϑ ϑ+ PBαy,Lϑϑ〉R

+
1

2
〈Lϑϑ, PAαLϑ ϑ+ PBαy〉R

=

〈
∂x

∂t
, x

〉

L
+

1

2

〈
(PAα +AT

αP )Lϑ ϑ,Lϑϑ
〉

R
+ 〈Lϑϑ, PBαy〉R

= uT y +
1

2

〈
−QTQPLϑ ϑ,Lϑϑ

〉
R

+ 〈Cα Lϑϑ, y〉R
,

where we used (7.46). Using the lower equation in (7.45) we obtain

〈Acw,w〉X̃ = −1

2

〈
QTQPLϑ ϑ,Lϑϑ

〉
R
≤ 0.

Now we need to prove that (I − Ac) is equal to X̃ . This follows as the last part
of the proof of Theorem 5.8, see page 122. Hence the result follows from the
Lümer-Phillips theorem.

194



7.3. Boundary control systems: Examples

Continuing with the transmission line example, we clearly have that P = I and

−QTQ = −2




0 0 0 0
0 Ra 0 0
0 0 0 0
0 0 0 Rb


 .

It thus follows that this is a boundary control system. ∗
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Chapter 8

2D and 3D Boundary Control
Systems

In the previous chapters we have concentrated in one dimensional (1D) sys-
tems. In Chapter 2 we parameterized a class of BCS based on a selection of a
matrix, which determines the boundary conditions. In this chapter we present
some ideas that could help to extend those results to systems in larger spatial
domains. We introduce what could be the starting point for that extension. In
particular, we concentrate on 2D and 3D systems. Obviously, there are some
differences and some complications emerge when we study 2D and 3D systems
as compared to 1D systems. Mainly, the input an output spaces are no longer
finite-dimensional. This in turn, implies that the matrix W that determines the
boundary conditions is not any more a matrix, but an operator depending on
the position on the boundary of the spatial domain. Also, the results obtained
depend on the shape (smoothness) of the boundary of the spatial domain. The
main complication emerges with the boundary operator and the selection of the
input and output spaces since these selection may depend on the problem at
hand.

8.1. Basic concepts on Sobolev spaces

We start with a basic introduction to Sobolev spaces in several dimensions, since
there are some differences with respect to Sobolev spaces in one spatial dimen-
sional domain, which are the spaces used in the previous chapters.

Definition 8.1. A bounded domain Ω in R
d with boundary Γ is said to be of class

CN if there exists a family of bounded open sets

Oj , (j = 0, 1, . . . , r)
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covering Ω such that ∪r
j=1Oj ⊃ Γ and for each j = 1, . . . , r there exists a diffeo-

morphism ϕj (ϕj and ϕ−1
j of class CN ) which sends Oj into the open unit ball Q

in R
d. ϕj sends

Oj ∩ Ω into Q+ = {(y′, yd) ∈ Q | yd > 0}
Oj ∩ Γ into Q0 = {(y′, yd) ∈ Q | yd = 0}

Oj ∩ ∁Ω into Q− = {(y′, yd) ∈ Q | yn < 0},

where ∁Ω denotes the complement of Ω.

If Oi ∩Oj 6= ∅, then there exists a homeomorphism Jij of class CN , with strictly
positive Jacobian, of ϕi(Oi ∩ Oj) onto ϕj(Oi ∩ Oj) such that

ϕj(x) = Jij(ϕi(x)), ∀x ∈ Oi ∩ Oj .

{Oi, ϕi}, j = 1, . . . , r, is then a system of local maps defining Γ. We call {αi} a
partition of unity subordinate to the covering {Oi ∩ Ω} of Ω if

αi ∈ D(Rd), suppαi ⊂ Oi ∩ Ω,
r∑

i=0

αi(x) = 1, ∀x ∈ Ω.

If it is said that the domain has smooth boundary, then it is meant that the domain
is of class C∞. ♣

O1

O2

Oi

O0

Ω

Γ

Figure 8.1.: Cover of Ω.

Let Ω be a bounded open set in R
d with smooth boundary Γ (sometimes denoted

as ∂Ω). Here D(Ω) is the space of all indefinitely differentiable functions with a
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compact support in Ω. By D(Ω) we denote the set

D(Ω) = {φ ∈ D(Rd) | φ|Ω}, (8.1)

or equivalently, if O denotes any open subset of R
d such that Ω ⊂ O,

D(Ω) = {φ ∈ D(O) | φ|Ω}.

Note that in this case we have D(Ω) ⊂ D(Ω). Now let D′(Ω) denote the dual
space of the space of D(Ω), often called the space of distributions on Ω, i.e., the
set of continuous linear forms on D(Ω): D′(Ω) := L(D(Ω)). We denote by 〈〈·, ·〉〉
the duality between D(Ω) and D′(Ω) and we remark that when f is a locally
integrable function, then f can be identified with a distribution by

f̃(φ) = 〈〈f, φ〉〉 =

∫

Ω

f(x)φ(x) dx ∀φ ∈ D(Ω).

If we want to define a generalized derivative of a distribution so that for each
f ∈ D(Ω) we have

∂f̃(φ) = −
∫

Ω

f · ∂φ dx = −f̃(∂φ), φ ∈ D(Ω),

then we must define ∂ as follows.

Definition 8.2 (page 4, [Sho97]). For each distribution u in D′(Ω) the derivative
∂u ∈ D′(Ω) is defined by

∂ũ(φ) = −ũ(∂φ), φ ∈ D(Ω). ♣

In general, we have for α = (α1, . . . , αn) ∈ N
d and |α| =

∑d
i=1 αi that

Definition 8.3 (Section 1.1, [GR86]). For each distribution u ∈ D′(Ω), we define
∂αu in D′(Ω) by

∂αũ = 〈〈∂αu, φ〉〉 = (−1)|α| 〈〈u, ∂αφ〉〉 , ∀φ ∈ D(Ω),

i.e., if u ∈ C|α|(Ω), then

∂αu =
∂|α|u

∂α1
x1 . . . ∂

αn
xn

. ♣

For m ∈ N we define the Sobolev space

Hm(Ω) = {v ∈ L2(Ω) | ∂αv ∈ L2(Ω), ∀|α| ≤ m}, (8.2)
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which is a Hilbert space for the norm

‖u‖m,Ω =


 ∑

|α|≤m

∫

Ω

|∂αu(x)|2 dx




1/2

. (8.3)

This is a Hilbert space for the inner product

〈u, v〉Hm(Ω) =
∑

|α|≤m

∫

Ω

∂αu(x)∂αv(x) dx. (8.4)

We will also use the notation 〈u, v〉m,Ω = 〈u, v〉Hm(Ω).

Since D(Ω) ⊂ Hm(Ω), we define the space Hm
0 (Ω) as the closure of D(Ω) for

the norm ‖·‖Hm(Ω). When m ≥ 1 and Ω is a proper subset of R
d then Hm

0 (Ω) is

generally a proper subspace of Hm(Ω). On the other hand, when m = 0 we have
the following result.

Lemma 8.4 (Lemma 1.1 of [GR86]): Let Ω be a bounded open set in R
d with a

sufficiently regular boundary Γ. Then the space D(Ω) is dense in L2(Ω). ♥

We denote by ‖v‖ the norm in L2(Ω) (L2(Ω)n) of an element v ∈ L2(Ω) (re-
spectively v ∈ L2(Ω)n) and by 〈v, u〉 the inner product of two elements v, u in
these spaces. Similarly, ‖v‖Γ denotes the norm in L2(Γ) (L2(Γ)n) of an element
v ∈ L2(Γ) (respectively v ∈ L2(Γ)n) and by 〈v, u〉Γ the inner product of two el-
ements v, u in these spaces. Sometimes we will write 〈·, ·〉L2(Γ)m to emphasize

that it is the inner product on L2(Γ)m. Also, 〈〈·, ·〉〉H denotes the duality product
of H and its dual.

The next theorem shows that smooth functions are dense in Hm(Ω).

Theorem 8.5 (Th. 1.2 of [GR86]): Let Ω be a bounded open subset of R
d with

smooth boundary.

1) The space D(Ω) is dense in Hm(Ω) for all integers m ≥ 0.

2) Let u ∈ Hm(Ω) and let ũ denote its extension by zero outside Ω. If ũ ∈
Hm(Rd) then u ∈ Hm

0 (Ω).

3) If in addition Γ is bounded and m ≥ 1, there exists a continuous linear
extension operator P from Hm(Ω) into Hm(Rd):

Pu|Ω = u ∀u ∈ Hm(Ω).
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Let dσ denote the surface measure on Γ and let L2(Γ) be the space of square inte-
grable functions on Γ with respect to dσ, equipped with the norm

‖v‖L2(Γ) =

(∫

Γ

(v(σ))2 dσ

)1/2

.

Theorem 8.6 (Th. 1.2 of [GR86]): Let Ω be a bounded open subset of R
d with

smooth boundary Γ.

• D(Ω) is dense in H1(Ω).

• The space D(Γ) is dense in Hs(Γ), s ≥ 0.

• There exists a constant C such that

‖γ0 φ‖L2(Γ) ≤ C ‖φ‖H1(Ω) , ∀φ ∈ D(Ω), (8.5)

where γ0 φ denotes the value of φ on Γ.

It thus follows that the mapping γ0 defined on D(Ω) can be extended by conti-
nuity to a mapping, still called γ0 (trace of order zero), from H1(Ω) into L2(Γ), i.e.,
γ0 ∈ L(H1(Ω); L2(Γ)).

Theorem 8.7 (Th. 1.3 of [GR86]): Let Ω be a bounded open subset of R
d with

smooth boundary Γ. Then

• ker(γ0) = H1
0 (Ω).

• The range space of γ0 : H1(Ω) → L2(Γ) is a proper and dense subspace
of L2(Γ), called H1/2(Γ).

In the particular case Ω = R
d, it is possible to give an equivalent definition of

Hm(Ω), by making use of the Fourier transform. If u ∈ L2(R
d), the Fourier trans-

form û in L2(R
d) is defined by

û(ξ) =
1

(2π)d/2

∫

Rd

exp(−i x · ξ)u(x) dx, x · ξ = x1ξ1 + · · · + xdξd, (8.6)

the integral converging in the sense ofL2 and u→ û is an isomorphism ofL2(R
d)

onto L2(R
d). We set

û = Fu, and u = F û =
1

(2π)d/2

∫

Rd

exp(i x · ξ)û(ξ) dξ.
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It is well-known that

F(∂αu) = (i ξ)αFu, ∀α
∂βF(u) = F

(
(i x)βu

)
, ∀β. (8.7)

Thus, if Ω = R
d, Hm(Ω) can be described by (8.2) or by

Hm(Rd) = {v ∈ L2(R
d) | (1 + |ξ|2)m/2v̂ ∈ L2(R

d)}, (8.8)

with the norm

‖v‖Hm(Rd) =
∥∥∥(1 + |ξ|2)m/2v̂

∥∥∥
L2(Rd)

(8.9)

being equivalent to the norm (8.3). It is worth to mention that the representa-
tion (8.8) is also valid for m ∈ R, see [LM72].

8.2. Some auxiliary spaces

In this chapter we consider the operator J defined by

J e = P0e+

d∑

j=1

Pj
∂e

∂xj
. (8.10)

where

PT
0 = −P0 and PT

j = Pj , j = 1, . . . , d. (8.11)

Following the notation of previous chapters we should write P1,j since this is a
first-order differential operator. However, for simplicity we denote them by Pj .
As we did in the previous chapters, we start by studying Stokes theorem applied
to this operator J . For the moment let e ∈ H1(Ω,Rn) and Ω be a bounded
open subset of R

d with a smooth boundary Γ. Next we study the expression
J e1 · e2 + e1 · J e2 (the dot denotes the dot product on R

n) and we show that it
can be written in divergence form. Observe that we have for e1, e2 ∈ H1(Ω,Rn)

J e1 · e2 + e1 · J e2 =


P0e1 +

d∑

j=1

Pj
∂e1
∂xj


 · e2 + e1 ·


P0e2 +

d∑

j=1

Pj
∂e2
∂xj




= P0e1 · e2 + e1 · P0e2 +
d∑

j=1

Pj
∂e1
∂xj

· e2 +
d∑

j=1

e1 · Pj
∂e2
∂xj
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Using equation (8.11) we obtain

J e1 · e2 + e1 · J e2 =

d∑

j=1

(
Pj
∂e1
∂xj

· e2 + e1 · Pj
∂e2
∂xj

)
=

d∑

j=1

∂

∂xj
(e1 · Pje2)

= div



e1 · P1e2

...
e1 · Pde2


 . (8.12)

Theorem 8.8: Let Ω be a bounded open subset of R
d with smooth boundary

Γ and J be a skew symmetric operator defined by (8.10)–(8.11) with D(J ) =
H1(Ω,Rn). Then for any two functions ei ∈ D(J ), i ∈ {1, 2}, we have that

〈J e1, e2〉L2(Ω)n + 〈e1,J e2〉L2(Ω)n =
〈
e1|Γ

, Qηe2|Γ

〉
L2(Γ)n

, ∀ e1, e2 ∈ H1(Ω)n,

(8.13)
where ei|Γ

= γ0(ei) is the restriction of ei to Γ, the symmetric operator Qη is
defined by

Qη = η1P1 + · · · + ηdPd (8.14)

and η = [η1, . . . , ηd]
T is the outward unit normal vector field on Γ.

PROOF: Following (8.12) we write

〈J e1, e2〉L2(Ω)n + 〈e1,J e2〉L2(Ω)n =

∫

Ω

(J e1 · e2 + e1 · J e2) dω

=

∫

Ω

div

[
e1·P1e2

...
e1·Pde2

]
dω.

Since ei ∈ H1(Ω)n, i ∈ {1, 2}, Gauss’s divergence theorem applies and we thus
obtain

〈J e1, e2〉L2(Ω)n + 〈e1,J e2〉L2(Ω)n =

∫

Γ

[
e1·P1e2

...
e1·Pde2

]

|Γ

· η dω,

where η is the outward unit normal vector field on Γ. Letting ηi be the i-th
component of η we can rewrite the equation above as follows

〈J e1, e2〉L2(Ω)n + 〈e1,J e2〉L2(Ω)n =

∫

Γ

e1 · (η1P1 + · · · + ηdPd) e2 dω

From this the result follows. Since the matrices Pj , j = 1, . . . , d, are symmetric it
is easy to see that Qη is a symmetric operator.
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Observe that Qη, see (8.14), considered as an operator on L2(Γ)n is a contin-
uous operator since the boundary Γ is assumed to be smooth. Note also that
the theorem above can be seen as Stokes theorem applied to the formally skew-
symmetric operator J , and equation (8.13) can be seen as a Green’s identity. As
it was done in previous chapters we could use this as a starting point to define
the boundary port-variables. However, as we did in Section 6.5, we have to de-
fine the assumptions we make on the matrices Pj . In this chapter we make the
following assumptions.

ASSUMPTION 8.9: a) The boundary of the bounded open set Ω ⊂ R
d is charac-

teristic with constant multiplicity. This means that dim kerQη(x) is constant on
each component of the boundary of Ω, i.e.,

dim kerQη(x) = d− 2r, ∀x ∈ Γ,

⇐⇒ rank Qη(x) = 2r,

where d > 2r ∈ N is constant.

b) The spectrum ofQη(x), x ∈ Γ, is symmetric with respect to the imaginary axis,
and the sign of its eigenvalues does not change for all x ∈ Γ. That is, there are r
eigenvalues with positive eigenvalues. ♥

Now we can try to follow the ideas presented in Section 6.5. Next we proceed to
define the port variables. Following Assumption 8.9 and the smoothness on the
boundary of Γ, we have that the eigenvalues of Qη are continuous real-valued
functions and Qη can also be diagonalized. That is, there exist a unitary operator

R̃(x) and a diagonal matrix containing the eigenvalues of Qη, say Λ, such that

Qη = R̃Λ R̃∗, with R̃∗ R̃ = IL2(Γ)n , Λ =




Λ1 0 0
0 −Λ1 0
0 0 0


 . (8.15)

Here, IL2(Γ)n is the identity operator on L2(Γ)n (also denoted by I) and Λ1 ∈
L(L2(Γ)r) contains the positive eigenvalues ofQη, which is possible by Assump-
tion 8.9. Now observe that Λ satisfies




Λ1 0 0
0 −Λ1 0
0 0 0


 =

1

2




Λ1 −Λ1 0
I I 0
0 0 0



∗ 


0 I 0
I 0 0
0 0 I






Λ1 −Λ1 0
I I 0
0 0 0




=

[
Rext 0

0 0

]∗ [
Σ 0
0 I

] [
Rext 0

0 0

]

=

[
R∗

extΣRext 0
0 0

]
, (8.16)
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where I is the identity operator in the respective space, and

Rext =
1√
2

[
Λ1 −Λ1

I I

]
∈ L(L2(Γ)2r), Σ =

[
0 I
I 0

]
∈ L(L2(Γ)2r). (8.17)

Accordingly to (8.16) we partition the unitary operator R̃ ∈ L(L2(Γ)n) as follows

R̃∗ =

[
R∗

R∗
0

]
, R∗ ∈ L(L2(Γ)n, L2(Γ)2r). (8.18)

Note that R∗ could be considered as a projection onto the range of Qη and R∗
0 a

projection onto the kernel of Qη .

Definition 8.10. Let r ∈ N be as described in Assumption 8.9 and γ0 : H1(Ω)n →
L2(Γ)n be the trace operator of order zero, i.e., γ0(u) = u|Γ for u ∈ H1(Ω)n.
Then, the boundary port-variables associated with the differential operator J are
the operators e∂ , f∂ ∈ L(H1(Ω)n, L2(Γ)r), defined by

[
f∂,u

e∂,u

]
= RextR

∗ γ0(u), u ∈ H1(Ω)n, R∗γ0(u) ∈ L2(Γ)2r (8.19)

where Rext and R∗ are defined by (8.17) and (8.18), respectively. ♣

Now we can reformulate Theorem 8.8 to include the port variables. This follows
from the following theorem.

Theorem 8.11: Let Ω be a bounded open set in R
d with a smooth boundary Γ.

Then Green’s identity (8.13) can be rewritten as

〈J u, v〉L2(Ω)n + 〈u,J v〉L2(Ω)n = 〈f∂,v, e∂,u〉L2(Γ)r + 〈e∂,v, f∂,u〉L2(Γ)r (8.20)

for all v, u ∈ H1(Ω)n. Furthermore, the range of the operator
[

f∂
e∂

]
: H1(Ω)n →

L2(Γ)2r is dense in L2(Γ)2r.

PROOF: The first part follows easily from (8.15)–(8.19). Indeed,

〈Qηv, u〉L2(Γ)n =
〈
Λ R̃∗v, R̃∗ u

〉
L2(Γ)n

= 〈ΣRextR
∗v,RextR

∗ u〉L2(Γ)2r

=

〈
Σ

[
f∂,v

e∂,v

]
,

[
f∂,u

e∂,u

]〉

L2(Γ)2r

.

The denseness of ran
[

f∂
e∂

]
follows from Theorem 8.7 and the surjectivity of the

operator RextR
∗.
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Since the range of the boundary port operator
[

f∂
e∂

]
is a proper subset of L2(Γ)n,

called H1/2(Γ), we would like to consider the maximal domain of the operator J ,
see (6.56). So we consider the space H(J,Ω) defined as

H(J,Ω) = {v ∈ L2(Ω)n | J v ∈ L2(Ω)n} . (8.21)

This is a Hilbert space, see [Rau85], when endowed with the norm

‖v‖2
J = ‖v‖2

+ ‖J v‖2
. (8.22)

Recall that in Section 6.5 we had that the boundary operator was surjective
for all functions on HN (a, b), see Theorem 2.6, and hence for all functions on
H(J, (a, b)). However, when the dimension of the spatial domain is larger than
one, this is not always true, see Theorem 8.11. Thus, one may hope that by
extending the boundary operator to the larger domain H(J,Ω) one may obtain
surjectivity, which is needed in order to define boundary control systems, see
Definition 1.10.b. But, as the following example shows, this is still not true.

Example 8.12 Consider a plane membrane with a smooth shape, homoge-
neously stretched by a tension T and with a mass density ρ. Small vibrations on
the membrane are described by the 2D wave equation

∂2ν

∂t2
=
T

ρ

(
∂2ν

∂x2
1

+
∂2ν

∂x2
2

)
, (8.23)

where ν(x1, x2, t) is the amplitude at position (x1, x2) and time t. This can be
seen as a model for the vibration of the head of a drum. For simplicity we assume
T = 1, ρ = 1, and Ω is bounded (e.g. the unit circle) with smooth boundary Γ.
Equation (8.23) can be written as a port-Hamiltonian system by introducing the
(energy) variables

s =
∂ν

∂t
, and v =

[
v1
v2

]
=

[
∂ν
∂x

∂ν
∂y

]
= ∇ ν. (8.24)

This gives that equation (8.23) becomes

∂s

∂t
= ∇ · v = div

(
v
)

∂v

∂t
= ∇s,

(8.25)

where ∇ is the gradient and div is the divergence operator, see [DL85b, Chapter

IX]. Observe that J is (with an abuse of notation)
[

0 div
∇ 0

]
, which can also be
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written as

∂

∂t




s
v1
v2


 =

∂

∂x



v1
s
0


+

∂

∂y



v2
0
s




=




0 1 0
1 0 0
0 0 0


 ∂

∂x1




s
v1
v2


+




0 0 1
0 0 0
1 0 0


 ∂

∂x2




s
v1
v2




=P1
∂

∂x1




s
v1
v2


+ P2

∂

∂x2




s
v1
v2


 . (8.26)

For this system we have, see (8.14),

Qη =




0 η1 η2
η1 0 0
η2 0 0


 . (8.27)

Next we want to find the port-variables. For this we choose R, which satisfies
R∗R = I , as follows (recall that η is the unit normal)

R =

√
2

2




1 −1
η1 η1
η2 η2


 , and thus

[
Λ1 0
0 −Λ1

]
= R∗QηR =

[
1 0
0 −1

]
.

From (8.17) we get that

Rext =

√
2

2

[
1 −1
1 1

]
,

and hence the ports become
[
f∂,w

e∂,w

]
= RextR

∗
[
s
v

]

|Γ
=

[
s

η · v

]

|Γ
, w =

[
s
v

]
. (8.28)

Note, from (8.24), that the term η · v corresponds to ∂ν
∂η , where ∂

∂η = η · ∇ is

the outward normal derivative. It is worth to mention that these are the typical
boundary variables for the 2D wave equation. Next we proceed to find the range
of the boundary port operator. To do this, first note that the maximal domain of
J , see (8.21), is given by

H(J,Ω) =








s
v1
v2


 ∈ L2(Ω)3

∣∣∣∣
∂s

∂x1
,
∂s

∂x2
,

(
∂v1
∂x1

+
∂v2
∂x2

)
∈ L2(Ω)





=








s
v1
v2


 ∈ L2(Ω)3

∣∣∣∣ s ∈ H1(Ω), and

[
v1
v2

]
∈ H(div ,Ω)



 ,
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where H(div ,Ω) = {v ∈ L2(Ω)2 | div (v) ∈ L2(Ω)}. Since s ∈ H1(Ω) we have,
from Theorem 8.7, that the range of f∂ , see (8.28), is equal to H1/2(Γ) ⊂ L2(Γ).
On the other hand, it is know, see Theorem 2.5 and Corollary 2.8 of [GR86], that
the boundary mapping γn : v → η · v|Γ defined on H(div ,Ω) is surjective onto

H−1/2(Γ), which is the dual space of H1/2(Γ). Summarizing we have for the 2D
wave equation that

ran

[
f∂,w

e∂,w

]
=

[
H1/2(Γ)
H−1/2(Γ)

]
, ∀ w ∈ H(J,Ω). (8.29)

∗

The example above shows that the selection of the input and output spaces for
2D and 3D systems is not as trivial as it is for the 1D case. To make things worse,
the operators f∂ and e∂ do not even map the same space. One may also wonder
whether, in general, the boundary port operator is surjective as in (8.29). But this
is not the case. In fact, for Maxwell equations one can show that the boundary
port operator is not surjective in H1/2(Γ) ×H−1/2(Γ), see [Tar97] or [GR86].

In the example above we can see that the boundary port operator can also be
defined on H(J,Ω). Below we describe some difficulties that arise when one
tries to extend this operator in general.

Following the definition of the space H(J,Ω) given in (8.21) we also consider the
space H0(J,Ω) defined as the closure of D(Ω)n in the space H(J,Ω), i.e.,

H0(J,Ω) = D(Ω)n
H(J,Ω)

. (8.30)

The following results are useful for proving results for the operator J .

Lemma 8.13: Let Ω be a bounded open set in R
d with a Lipschitz boundary Γ.

Let v ∈ H(J,Ω) be such that

〈J v, φ〉 + 〈v,J φ〉 = 0, ∀φ ∈ D(Ω)n. (8.31)

Then, v ∈ H0(J,Ω). ♥
PROOF: We use the same idea of the proof of Lemma 1 of [DL85b, p.206]. Ba-
sically, we want to prove something similar to point 2 in Theorem 8.5. Let
v0 := J v, and denote by ṽ and ṽ0 the extension of v and v0 to R

d, which are
zero outside Ω. Equation (8.31) implies that

〈ṽ0, θ〉L2(Rd) + 〈ṽ,J θ〉L2(Rd) = 0, ∀ θ ∈ D(Rd)n.

However, since this holds for all θ with compact support, we can see by, using the
derivative in the distributional sense (see Definition 8.3) in 〈ṽ,J θ〉, that ṽ satisfies
〈〈ṽ,J θ〉〉D(Rd)n = −〈〈J ṽ, θ〉〉D(Rd)n . Hence, the equation above becomes

〈〈ṽ0, θ〉〉D(Rd)n + 〈〈−J ṽ, θ〉〉D(Rd)n = 0, ∀ θ ∈ D(Rd)n.

208



8.2. Some auxiliary spaces

This in turn implies that ṽ0 = J ṽ in D′(Rd)n. Since ṽ0 ∈ L2(R
d)n, we can see

that ṽ ∈ H(J,Rd) with supp ṽ ⊂ Ω.

It then suffices to construct a sequence in D(Rd)n that converges to ṽ in H(J,Rd)
with supports in Ω. In other words, to find a sequence in D(Ω)n converging to
v ∈ H(J,Ω). To do this, we will use a truncation and regularization argument,
see [DL85a, pp. 457–463].

• If Ω is a bounded open set which is strictly star-like1, then the family of
functions ṽσ defined for all σ ∈ [0, 1) by

ṽσ(x) = ṽ
(x
σ

)
(hence with supp ṽσ ⊂ Ω)

converges as σ ↑ 1 to ṽ ∈ H(J,Rd). Next, we regularize the functions ṽσ .
Let ρ ∈ D(Rd) be such that ρ ≥ 0, ρ(x) = 0 for |x| ≥ 1 (i.e., supp ρ ⊂
B(0, 1)), and

∫
Rd ρ(x) dx = 1 (see [DL85a, Lemma 1,p.458]). Then the fam-

ily of functions ρǫ, ǫ > 0, defined by (see [DL85a, pp.459–460]) ρǫ(x) =
1
ǫd ρ
(

x
ǫ

)
is such that

ρǫ ∈ D(Rd), ρǫ ≥ 0, ρǫ(x) = 0 for |x| ≥ ǫ,

∫

Rd

ρǫ(x) dx = 1,

which implies that for all u ∈ L2(R
d)n, ρǫ ∗ u → u in L2(R

d)n, where the ∗
denotes the convolution product.

Since ṽ ∈ H(J,Rd) we have ρǫ ∗ ṽ → ṽ in H(J,Rd) as ǫ → 0, and for ǫ
sufficiently small supp (ρǫ ∗ ṽσ) ⊂ Ω, hence ρǫ ∗ ṽσ ∈ D(Ω)n, see proof
of Lemma 2 of [DL85a, p.460]. This establish the existence of a sequence
ρǫ ∗ ṽσi

in D(Ω)n convergent to ṽ in H(J,Ω).

• The general case follows the same idea of point (iv) in the proof of Lemma 1
of [DL85b, p.206].

Theorem 8.14: Let Ω be a bounded open set in R
d with a bounded, Lipschitz

boundary Γ. Then the space D(Ω)n is dense in H(J,Ω).

PROOF: Let w ∈ H(J,Ω) be orthogonal to D(Ω)n; thus

〈w, v〉J := 〈w, v〉 + 〈Jw,J v〉 = 0, ∀ v ∈ D(Ω)n. (8.32)

1A bounded open set is star-like if there exists y ∈ Ω such that, σΩ ⊂ Ω, ∀σ ∈ [0, 1) with respect to
y (which we here take to be the origin)
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Let w0 := Jw. It is clear that w0 ∈ L2(Ω)n. Let v ∈ D(Ω)n. Then we have that
〈w0,J v〉 = −〈〈Jw0, v〉〉D(Ω)n , which in the equation above gives

〈〈w, v〉〉D(Ω)n = 〈〈Jw0, v〉〉D(Ω)n , ∀ v ∈ D(Ω)n.

This implies that w = Jw0 in D′(Ω)n. Since w ∈ H(J,Ω), we deduce that w =
Jw0 ∈ L2(Ω)n and thus w0 ∈ H(J,Ω). Furthermore, it satisfies (from (8.32) )

〈Jw0, v〉 + 〈w0,J v〉 = 0, ∀ v ∈ D(Ω)n. (8.33)

From Lemma 8.13 we conclude that w0 ∈ H0(J,Ω). Since D(Ω)n is dense in
H0(J,Ω) (by definition), there exits a sequence {ψk}k∈N, with ψk ∈ D(Ω)n, which
converges to w0 in H(J,Ω). Thus, since w0 = Jw and w = Jw0 we obtain

〈w0, w0〉J = lim
k→∞

〈w0, ψk〉J = lim
k→∞

〈w0, ψk〉 + 〈Jw0,Jψk〉

= lim
k→∞

〈Jw,ψk〉 + 〈w,Jψk〉

= lim
k→∞

〈〈Jw,ψk〉〉 − 〈〈Jw,ψk〉〉 = 0.

Hence w0 equals zero and so does w. Therefore, D(Ω)n is dense in H(J,Ω).

Theorem 8.15: Let Ω be a bounded open set in R
d with a smooth boundary Γ.

The trace map γQ : v → Qηv|Γ defined on D(Ω)n extends by continuity to a
continuous linear map – still denoted by γQ – from H(J,Ω) into H−1/2(Γ)n.
Furthermore, Green’s identity (8.13) holds for v ∈ H(J,Ω) and u ∈ H1(Ω)n,
that is

〈J u, v〉 + 〈u,J v〉 = 〈〈Qηv, u〉〉H1/2(Γ)n , ∀ v ∈ H(J,Ω), u ∈ H1(Ω)n. (8.34)

PROOF: We know that Green’s formula (8.13) holds for all v and u ∈ D(Ω)n, and
also for all u ∈ H1(Ω), that is

〈J u, v〉 + 〈u,J v〉 =

∫

Γ

〈Qηv, u〉Rn dγ, ∀ v ∈ D(Ω)n, u ∈ H1(Ω)n. (8.35)

Note that J satisfies ‖J u‖ ≤ c̃ ‖u‖H1(Ω)n for any u ∈ H1(Ω), and recall that

‖u‖ ≤ ‖u‖H1(Ω). We deduce from the equation above

∣∣∣∣
∫

Γ

〈Qηv, u〉Rn dγ

∣∣∣∣ ≤ ‖J u‖ ‖v‖ + ‖u‖ ‖J v‖

≤ c̃ ‖u‖H1(Ω)n ‖v‖ + ‖u‖H1(Ω)n ‖J v‖
≤ c ‖u‖H1(Ω)n ‖v‖J , ∀ v ∈ D(Ω)n, u ∈ H1(Ω)n
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where c and c̃ are real constants. Now, let µ be an element of H1/2(Γ). Then
there exits an element u ∈ H1(Ω) such that u = µ on Γ, see Theorem 5 of [DL85a,
p.114]. Hence the above inequality implies that2

∣∣∣∣
∫

Γ

〈Qηv, µ〉Rn dγ

∣∣∣∣ ≤ c ‖µ‖H1/2(Γ)n ‖v‖J , ∀ v ∈ D(Ω)n, µ ∈ H1/2(Γ)n. (8.36)

Thus
‖Qηv‖H−1/2(Γ)n ≤ c ‖v‖J .

It follows that the mapping γQ : v ∈ D(Ω)n 7→ Qηv|Γ extends by continuity
to a mapping from H(J,Ω) into H−1/2(Γ)n (because of the denseness of D(Ω)n

in H(J,Ω), from Theorem 8.14). Note that the inequality above holds for all
v ∈ H(J,Ω) and that the Green’s formula (8.35) is still true (by denseness) for
all v ∈ H(J,Ω), u ∈ H1(Ω)n, the integral on the right hand side of (8.35) being
replaced by the duality product on H1/2(Γ)n, see (8.34).

We now look at the kernel of γQ in H(J,Ω).

Theorem 8.16: The kernel ker(γQ) of γQ : H(J,Ω) → H−1/2(Γ) is the space
H0(J,Ω). That is

H0(J,Ω) = ker(γQ) = {v ∈ H(J,Ω) | Qηv|Γ = 0}. (8.37)

PROOF: By taking limits in (8.34), it is clear that H0(J,Ω) ⊂ ker(γQ) (see last part
of the proof of Theorem 8.14).

Let v ∈ ker(γQ); then from (8.34), v is such that

〈J v, φ〉 + 〈v,J φ〉 = 0, ∀φ ∈ D(Ω)n.

Then Lemma 8.13 implies that v ∈ H0(J,Ω). Hence ker(γQ) ⊂ H0(J,Ω).

Theorem 8.15 confirms the difficulties that arise when dealing with systems in
2D or 3D. In this case, instead of having an inner product on the boundary, we
have a duality product. Although, if we recall from the general introduction of
port-Hamiltonian systems in Section 1.7 the effort and flow spaces were selected
to be dual to each other, see (1.32). So, from that point of view, the result of
Theorem 8.15 is not that unexpected. Furthermore, Green’s identity (8.34) does
not hold for all elements in the same space. In fact, it is possible to extend (8.34)
so that it is valid for all v, u ∈ H(J,Ω), but in that case the duality product

2Recall that ‖µ‖
H1/2(Γ) = inf

u∈H1(Ω)
u|Γ=µ

‖u‖H1(Ω), see [GR86, p.8].
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on the boundary extends to a space which does not have a useful elementary
description, see [Rau85]. So, complications arise when one tries to extend the
boundary operator to a larger space.

In order to continue with the discussion we make the following assumption
based on Theorem 8.15 and Example 8.12.

ASSUMPTION 8.17: Let Ω be a bounded open set in R
d with a smooth boundary

Γ. Assume that the boundary port operator
[

f∂
e∂

]
defined on D(Ω)n can be ex-

tended by continuity to a continuous linear map – still denoted by
[

f∂
e∂

]
– from

H(J,Ω) into H1/2(Γ)r × H−1/2(Γ)r. Furthermore, assume that Green’s iden-
tity (8.20) holds for all v, u ∈ H(J,Ω), that is

〈J u, v〉+〈u,J v〉 = 〈〈e∂,u, f∂,v〉〉H1/2(Γ)r+〈〈e∂,v, f∂,u〉〉H1/2(Γ)r , ∀ v, u ∈ H(J,Ω).

(8.38)

♥

Note that by restricting
[

f∂
e∂

]
to H1(Ω) one obtains ran

[
f∂
e∂

]
= H1/2(Γ)2r, see

Theorem 8.7. Thus, under Assumption 8.17, one can see that ran f∂ = H1/2(Γ)r

and ran e∂ ⊃ H1/2(Γ)r. So, if Assumption 8.17 above is satisfied, then one could
prove that by imposing a (boundary) condition on either f∂ or e∂ one obtains
existence and uniqueness of solutions.

Theorem 8.18: Let Assumption 8.17 be satisfied and consider the skew-
symmetric operator J described in (8.10)–(8.11). Then the operator A defined
by A = J with domain

D(A) = {x ∈ H(J,Ω) | e∂,x = 0} (8.39)

is skew-adjoint, i.e., A∗ = −A and D(A∗) = D(A). As a consequence, A
generates a unitary semigroup.

PROOF: First recall the definition of the adjoint operator. The adjoint operator is
defined by

A∗u = {w ∈ L2(Ω)n | ∀ y ∈ D(A) we have 〈Ay, u〉 = 〈y, w〉} , (8.40a)

with domain

u ∈ D(A∗) ⇐⇒ ∃w ∈ L2(Ω)n s.t. ∀ y ∈ D(A) we have 〈Ay, u〉 = 〈y, w〉 .
(8.40b)

First we show that D(A∗) ⊂ H(J,Ω). Let u ∈ D(A∗). This implies, from the
definition of the adjoint operator, that there exist a w ∈ L2(Ω)n such that

〈Ay, u〉 = 〈y, w〉 ∀ y ∈ D(A), (8.41)
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and A∗u = w. Clearly, all D(Ω)n are in D(A). Thus we can select any y with
compact support in the equation above, which gives

〈J y, u〉 = 〈y, w〉 ∀ y ∈ D(Ω)n.

Since this holds for all y ∈ D(Ω)n, we can see by using the derivative in the distri-
butional sense, see Definition 8.3, that 〈〈J y, u〉〉D(a,b) = −〈〈y,J u〉〉D(a,b). Using

this in the equation above yields that w = −J u in D′(Ω)n. Since w ∈ L2(Ω)n,
we conclude that w = −J u ∈ L2(Ω)n, and hence D(A∗) ⊂ H(J,Ω) (since
u ∈ D(A∗) was arbitrary). So, we only need to prove the boundary condi-
tion. The argument above allows us to use (8.38). Thus, for all y ∈ D(A) and
u ∈ D(A∗) equation (8.38) becomes

〈Ay, u〉 = 〈y,−J u〉 + 〈〈e∂,u, f∂,y〉〉H1/2(Γ)r , ∀ y ∈ D(A), and ∀u ∈ D(A∗).

By using the definition of the adjoint operator we conclude that A∗ = −J and
f∂,y must lie in the kernel of the functional e∂,u. Since ran f∂ = H1/2(Γ)r (by
assumption) we conclude that e∂,u = 0. This proves the result.

It is easy to see that in the case of the wave equation in Example 8.12, the theorem
above applies. Also, in the case of the Mindlin plate, see [MMB05], one obtains
the same result.

Summarizing, we can see that extending the ideas presented in the previous
chapters to 2D and 3D systems is more difficult, mainly because the functions
behave very differently on the boundary. However, we can see that there is a
structure on the models that can help to extend the results presented in Chap-
ter 2, and this structure is not too different to the 1D case. Thus, studying further
the approach presented in this book to deal with 2D and 3D systems could lead
to some interesting results and perhaps to a simplification of the theory.
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Chapter 9

Conclusions and future work

In this thesis we have tried to provide a mathematical framework for the mod-
eling and analysis of open distributed parameter systems. From a mathematical
point of view this thesis merges the approach based on Hamiltonian modeling of
open distributed-parameter systems, employing the notion of port-Hamiltonian
systems, with the semigroup approach of infinite-dimensional systems theory.
The Hamiltonian representation provides powerful analysis methods (e.g. for
stability), and it enables the use of Lyapunov-stability theory and passivity-
based control. The semigroup approach has been widely applied in the analysis
of distributed parameter systems and it has facilitated the extension of some
notions from finite-dimensional system theory to the infinite-dimensional case.

We have seen that the port-Hamiltonian approach could lead, in some cases, to
a simplification of the theory and a better understanding of certain properties of
distributed parameter systems by dealing with classes of systems based on the
structure of the model provided. We have mainly used the port-Hamiltonian
formulation for the analysis of 1D-boundary control systems. These are systems
in which the input (or part of it) acts on the boundary of the spatial domain. In
these cases it is possible to parameterize the selection of the inputs (boundary
conditions) and outputs by the selection of two matrices in such a way that the
resulting system is passive. In this case these matrices determine the supply rate
of the passive system, making it easy, in particular, to obtain impedance passive
and scattering passive systems. In fact, as it is shown, these matrices can be used
to determine further properties of the system, such as stability, controllability,
and observability. This could be a first step towards a “matrix theory” for linear
distributed parameter systems on one-dimensional spatial domain.

As mentioned earlier, one of the key points of the port-Hamiltonian approach is
that it allows to deal with classes of systems. These classes of systems depend
on the structure of the model. This thesis has treated mainly two broad classes
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of systems. One corresponds to systems where the dissipation phenomena is not
present and the other includes systems with some type of dissipation (e.g. heat
or mass transfer, damping). It is shown that this already covers a very large class
of 1D-systems. These classes can, in turn, be divided into subclasses according
to the properties of the structure, to provide further tools for the analysis of such
systems. From a modeling point of view, this structure of the model arises natu-
rally, mainly because of the use of Hamiltonian modeling ideas.

This thesis has been mainly intended to show that the port-Hamiltonian formu-
lation could be an interesting and useful approach in the analysis of distributed
parameter systems. However, as a relative new approach for the analysis of DPS,
it has its advantages and disadvantages when compared with other more com-
monly used approaches. The author hopes that at least the reader can see the
port-Hamiltonian approach as another useful tool in the analysis of DPS.

9.1. Main contributions of the thesis

The main contributions of the thesis can be summarized as follows.

• In this thesis we formulated a theoretic framework for the modelling and
analysis of distributed parameter systems. The framework is based on the
port-Hamiltonian approach to systems theory and it is generalized from a
mathematical analysis point of view. The key point in the approach is the
structure of the model obtained, which is exploited in this thesis to pro-
vide a relative new point of view in the analysis of distributed parameter
systems.

• The port-Hamiltonian formulation has been used to model different dis-
tributed parameter systems, showing that a large class of 1D-systems can
be studied using this approach. By using the port-Hamiltonian formu-
lation one can group different systems according to the structure of the
model, and in this way it is possible to provide some tools that are valid
for a class of systems.

• The results presented in [LZM05] and [LZM04] have been extended to
cover a larger class of systems, including flexible structures with (viscous
or structural) damping and diffusion systems. This allows to parameterize
passive boundary control systems in terms of matrices.

• We have shown that a large class of energy preserving systems are in turn
conservative. This allows to relate stability, controllability, and observabil-
ity properties of these systems.
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• We provided tools that facilitate the verification of the Riesz basis property
for a class of systems. The validity of this property leads to the verification
of other properties of the system.

• It is shown that by making use of the structure of the model and the
parametrization of the BCS described in Chapter 2, it is possible, in some
cases, to simplify the verification of the stability property of some bound-
ary control systems. In some cases, this verification can even be in terms
of matrices. Furthermore, a simple result is provided to verify exponential
stability.

• It has been described how to interconnect Dirac structures and how this
helps in the study of interconnected systems. This property is useful when
modeling systems using a modular approach where the system is thought
of as the interconnection of smaller subsystems.

9.2. Recommendations for future work

The results presented here have led to more questions and therefore for several
directions for future research. We briefly review them organized by topic.

9.2.1. Extension to nonlinear systems

This will clearly be a major research topic in the analysis of distributed param-
eters systems using the port-Hamiltonian approach. Proving existence of solu-
tions for a class of nonlinear DPS would be already a big achievement.

As it was described in Chapter 1, the structure of the models are still valid for
nonlinear systems. Hence one could try to exploit this (as it was done in this
book) to try to prove similar results for nonlinear systems. Obviously, this is not
an easy task. However, the author believes that it could be possible to get some
interesting results in some cases. For instance, for the class of systems studied in
Chapter 6, one could try to prove properties of a nonlinear port-Hamiltonian sys-
tem by using the idea of the extended skew-symmetric operator, see Section 6.1.
That is, by seeing the nonlinear system as the closed-loop of a linear system with
a nonlinear feedback, the nonlinearity being included in the operator S.

Also, the fact that in some cases, the nonlinearity can be included in the operator
L or S could be helpful and useful.
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9.2.2. Some properties of distributed parameters systems

As it was shown in this thesis, some interesting results and tools that facilitate the
verification of some properties of distributed parameter systems can be obtained
using the port-Hamiltonian formulation. However, some of these results were
general and others were restricted to the case N = 1. It would be desirable to
extend the latter case to higher order differential operators, or at least to the case
N = 2, which would include most of the cases already described in this book
and the most common ones appearing in applications.

For instance, it is know that the Euler-Bernoulli beam under certain boundary
conditions has the Riesz basis property. Thus, it should be possible to extend the
results presented in Chapter 4 to the case N = 2.

Also, the author believes that the results on exponential stability presented at the
end of Chapter 5, in particular Theorem 5.17 and Corollary 5.19, can be extended
to the case of PN not being invertible by using the Dirac structure obtained in
Chapter 7. That is, by studying the system

∂

∂t

[
x1

x2

]
=

[
P1 0
0 0

]
∂

∂z

[
L1 x1

L2 x2

]
+

[
P0 G
−GT 0

] [
L1 x1

L2 x2

]
,

where P1 is a nonsingular n × n symmetric matrix and G is a n × m matrix,
see (7.13), (7.14), and Example 7.8. These type of systems also appear in applica-
tions, such as models for laminated beams and the suspension system described
in Example 7.8.

Even though, for energy preserving systems we have related stability with ob-
servability and controllability, it should also be possible to prove these properties
directly. In particular, more tools for the analysis of the observability and con-
trollability properties for systems including dissipation should also be provided.
Also, it is needed to provide more results on stability for the class of systems
in studied in Chapter 6. This should, in theory, be easier due to the dissipation
phenomena that is present in these type of systems.

9.2.3. Interconnected systems

Clearly the presentation given in Chapter 7 was restricted to a specific class of
power-conserving interconnection. Thus it would be desirable to understand
better how more general types of interconnections fit into the framework pre-
sented in Chapter 7.

However, even in the case of the simple interconnection used in Chapter 7, there
are some things that could be studied in more detail. For instance, the case of
partial interconnection should not be too difficult. This corresponds to a plant
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interconnected with a controller where the control acts on part of the spatial do-
main, i.e., locally distributed feedback.

Other interested question regarding interconnected systems is whether it is pos-
sible to get an insight of the overall properties of the interconnected system by
knowing only properties of the subsystems.

9.2.4. 2D and 3D systems

As discussed in Chapter 8, in this case there are some ideas that could be general-
ized. We know that these systems still have a similar structure to the one used in
most of this book, so several ideas could be extended. However, a better under-
standing on how to select the input and output spaces is needed. It seems that if
one selects either f∂ or e∂ as the boundary condition one can choose H1/2(Γ)r or
H−1/2(Γ)r, respectively, as the input space. However, when a linear combination
of both is needed, then one may need to consider the space

{
x ∈ H(J,Ω) |

[
f∂

e∂

]
∈ L2(Γ)2r

}

instead of just the space H(J,Ω). This leads to study further properties of this
space. Also, the surjectivity of the boundary operator determining the input will
follow if either f∂ or e∂ is surjective. However, proving existence of solutions is
still not that simple, since the adjoint of the boundary operator is not easy to find
in the general case.
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Appendix A

Characteristic curves and
Holmgren’s Theorem

This appendix is mainly intended to give an idea of how Holmgren’s Theorem
can be used in the analysis of distributed parameter systems. Holmgren’s The-
orem is a useful tool in the study of stability and observability properties of
some systems. In this appendix, only a brief introduction is presented just to
get a flavor of how this theorem can be applied. For more details the reader is
referred, for instance, to [Joh49], [Joh78], [Isa98] and [Hör93]. We start by de-
scribing how the characteristic curves affect the solution of a partial differential
equation. Then, we introduce Holmgren’s theorem in the case of constant coeffi-
cients.

A.1. Characteristic curves and PDEs

The characteristic curves are introduced and defined in Section 2.4. In this sec-
tion we describe how they can be used to solve some PDEs. We do this by an
example. Consider the equation

a(x, t)
∂v

∂x
(x, t) + b(x, t)

∂v

∂t
(x, t) = c(x, t)v(x, t) + d(x, t), (A.1)

where a, b, c and d are given functions. Observe that the left hand side can be
rewritten as

[a b]

[
∂v
∂x
∂v
∂t

]
= [a b] · ∇v.
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Hence, at each point (x, t) where the vector [a, b] is defined and nonzero, the left
side of (A.1) is a directional derivative of v(x, t) in the direction of [a, b]. The
equations

dx

ds
= a(x, t),

dt

ds
= b(x, t) (A.2)

determine a family of curves x = x(s), t = t(s) whose tangent vector [x′(s), t′(s)]
coincides with the direction of the vector [a, b] at each point where [a, b] is de-
fined and nonzero. Therefore, the derivative of v(x, t) along this curves becomes

dv

ds
=
dv[x(s), t(s)]

ds
=
dv

dx

dx

ds
+
dv

dt

dt

ds
= a

dv

dx
+ b

dv

dt
= cv + d (A.3)

where the chain rule was used as well as (A.1) and (A.2).

The method of characteristics for solving the initial value problem for (A.1) is as
follows, see [Zau89, Ch.2 and 3] and [Col04, Ch. 5]. We assume that the initial
curve C is given parametrically as

x = x(τ), t = t(τ), v = v(τ) (A.4)

for a given range of values of the parameter τ . The curve is required to have a
continuous tangent vector at each point. Every value of τ fixes a point a point on
C through which a unique characteristic curve passes. The family of character-
istic curves determined by the points of C may be parametrized as

x = x(s, τ), t = t(s, τ), v = v(s, τ), (A.5)

with s = 0 corresponding to the initial curve C. That is, we have x(0, τ) = x(τ),
t(0, τ) = t(τ), and v(0, τ) = v(τ).

The equations (A.5), in general, yield a parametric representation of a surface
in (x, t, v)-space that contains the initial curve C. Assuming the equations x =
x(s, τ) and t = t(s, τ) can be inverted to give s and τ as (smooth) functions of
x and t (this is the case if the Jacobian ∆(s, τ) = det [ xs xτ

ts tτ
] 6= 0 at C) these

functions can be introduced into the equation v(s, τ). The resulting function v =
V (x, t) satisfies (A.1) in a neighborhood of the curveC in view of (A.3), the initial
condition (A.5) (i.e., V [x(τ), t(τ)] = v(τ)), and is the unique solution of the given
initial value problem.

If the foregoing method does not lead to a solution, the initial value problem
may not have a solution at all or it may have infinitely many solutions. The
latter situation arises if the initial curve C is itself a characteristic curve.

Example A.1 Consider the equation

∂v

∂t
= −c ∂v

∂x
, v(x, 0) = f(x) (A.6)
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where c is a constant and f(x) is a given function. To apply the method of char-
acteristics we parametrize the initial curve C as follows, see (A.4),

x = τ, t = 0, v = F (τ). (A.7)

The characteristic equations, i.e., (A.2) and (A.3), become

∂x

∂s
= c,

∂t

∂s
= 1,

∂v

∂s
= 0. (A.8)

Solving (A.8) subject to (A.7) with s = 0 corresponding to the initial curve, gives

x(s, τ) = cs+ τ, t(s, τ) = s, v(s, τ) = F (τ). (A.9)

Using the first two equations to solve for s and τ as functions of x and t yields

s = t, τ = x− ct. (A.10)

Substituting this in the equation for v in (A.9), we obtain

v(s, τ) = F (τ(x, t)) = F (x− ct). (A.11)

Hence, we can see that the solution of (A.6) is given by v(x, t) = F (x− ct). Using
the initial condition v(x, 0) = f(x) we can see that the solution is

v(x, t) = f(x− ct), ∀t ≥ 0 and x ∈ (−∞,∞), (A.12)

which is a function that moves to right with time. Also, observe that the solution
is constant along the lines x− ct = k, where k is any constant, see Figure A.1. In
general, the characteristics can be seen as a set of curves on which the solution
remains constant.

Now consider x ∈ [0,∞) with the boundary condition v(0, t) = h1(t). We can
see that the solution is still given by (A.11) as long as x− ct > 0, or equivalently
x > ct. So, if x0 > ct0, we have v(x0, t0) = F (x0 − ct0). Using the B.C. at x = 0,
we obtain

v(0, t0) = F (−ct0) = h1(t0) ∀t0 ≥ 0

⇒F (z) = h1(−
1

c
z) ∀z ≤ 0. ∗

Hence, v(x0, t0) = h1(− 1
cx0 + t0) for all x0 − ct0 ≤ 0. From this we can see

that the boundary condition will move along the characteristic − 1
cx + t = k, or

equivalently x− ct = −ck, which is clearly parallel to x− ct = k. For instance, if
h1(t) = 0 and f(x) = 1, then we would see in Figure A.2 that the lighter region
would have a value of 1 and the darker region would have a value of 0. Observe
that f(x) and h1(t) only meet at time t = 0. From this, it is easy to see that a B.C.
at x = b > 0 will conflict with F (·) and hence with f and h1, since this function
and the B.C. would have to agree for all t > 0, see Figure A.2.

223



A. Characteristic curves and Holmgren’s Theorem

t

x

x-ct=k1

x-ct=0

x-ct=-k1

Figure A.1.: Characteristic curves.

v(x,t)=f(x-ct)

x-ct=k1

x-ct=k2

x-ct=0

v(x,t)=h1(x-ct)
x-ct= -ck

t

x

Figure A.2.: Characteristic curves.

A.2. Holmgren’s Theorem (Constant Coefficients)

We follow the notation of Section 2.4. In particular, let

L(x,D)u =
∑

|α|≤m

Aα(x)Dαu = B(x). (A.13)

The following theorem is an adaptation of the theorem on page 229 of [Joh49].
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Theorem A.2: Let L have constant coefficients. Let there be given a convex
conical solid consisting of the convex hull of a convex 1-dimensional “area”
B = [0, T ] in the plane x2 = 0 and of a point P = (x0

1, x
0
2) with

x0
2 > 0, x0

1 in the interior of B = [0, T ].

If all hyperplanes through P that have no other point in common with the
cone, are noncharacteristic, then the Cauchy data on B determines a solution
of Lu = 0 uniquely at P .

In other words, the theorem above says that if a characteristic curve passing
through a point P also intersects B = [0, T ], then the Cauchy data on B deter-
mines a solution of Lu = 0 uniquely at P , see Figures A.3 and A.4. The following

Figure A.3.: Characteristic lines passing through different points. Note that the
characteristic lines passing through points in the shaded area inter-
sect more than a point in the corresponding convex conical solid.

example shows how this theorem can be used.
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Example A.3 (Transport equation revisited) Consider the differential equation

∂v

∂t
= − c

∂v

∂z
, v(0, z) = v0(z), z ∈ [0, b], (A.14)

v(t, 0) =0, ∀ t ≥ 0.

First consider the case c > 0. Recall from Example A.1, that the characteristics
in this case are given by the curves z = ct + k with k a real constant. Follow-
ing the theorem above and the boundary condition imposed on the PDE, we can
see that in Figure A.3 v is zero along the line (t, 0). Thus, we can deduce, from
Holmgren’s theorem that the solution v is zero in all points below the charac-
teristic line passing through the point (0, 0), see Figure A.3. Observe that the
characteristic lines passing through the points above this line do not have any
other point in common with respect to the corresponding convex conical solid.

Figure A.4.: Characteristic lines passing through different points. Note that the
characteristic lines passing through points below the line (T, 0) −
(0, P4) intersect more than a point in the corresponding convex con-
ical solid.

Next consider the case c < 0. In this case we have the equation ∂v
∂t = c̃∂v

∂z
with the same boundary and initial condition as (A.14) and c̃ > 0. Recall from
Example A.1, that the characteristic curves in this case are given by the curves
z = −c̃t + k with k a real constant (the dotted lines in Figure A.4). Following
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the theorem above and the boundary condition imposed on the PDE, we can de-
duce that the solution v is zero in all points below the characteristic line passing
through the point (T, 0), see Figure A.4. Since the boundary condition hold for all
t ≥ 0 (hence for any T ), we can conclude, in particular, that v0(z) must be zero (for
some T large enough), and hence the solution will be zero everywhere. Observe that
the characteristic lines passing through points above the line (T, 0) − (0, P4) do
not have any other point in common with respect to the corresponding convex
conical solid. ∗

A.2.1. Consequences of Holmgren’s Theorem

Theorem A.4: Consider the system

∂x

∂t
(t) = J x(t), x(0) = x0,

where the differential operator J is given by

J x =

N∑

i=0

Ji
dix

dzi
(z), z ∈ [a, b] ,

with JN nonsingular. If this system satisfies the boundary conditions

x(a, t) =
∂x

∂z
(a, t) = · · · =

∂N−1x

∂zN−1
(a, t) = 0, (A.15)

x(b, t) =
∂x

∂z
(b, t) = · · · =

∂N−1x

∂zN−1
(b, t) = 0, ∀ t ≥ 0, (A.16)

i.e., all boundary variables are zero, then x0 = 0 and thus x(t) = 0 for all t ≥ 0.♦

PROOF: Recall that the only condition on JN is that it is nonsingular. First we

prove the caseN = 1. In this case the principal symbol is Lp

(
[ t
z ] ,

[
ξ1

ξ2

])
= ξ1I−

ξ2J1. The characteristic lines are described by the lines φ = 0 where φ = z+λit+k
with k ∈ R and λi, i = 1, . . . , n, is an eigenvalue of J1, see Section 2.4. Note that
this are the same characteristics of Example A.3. That they are the characteristic
curves follows since ∇φ =

[
λi
1

]
and detLp ([ t

z ] , ∇φ) = det(λiI − J1) = 0, see
Definition 2.22. One can apply Theorem A.2 to conclude that x(t) = 0. In fact,
by using the same argument used in Example A.3 we can see that, in this case,
we must have x0 = 0. In other words, if λi < 0 then we can use the boundary
conditions at b, see (A.15), to conclude that xi(z, 0) = 0. Similarly, if λj > 0 then
we can use the boundary conditions at a, see (A.16), to conclude that xj(z, 0) = 0.

In the case N > 1, we have that the principal symbol is Lp

(
[ t
z ] ,

[
ξ1

ξ2

])
= ξN

2 JN .

The characteristic lines are described by φ = t − c. Since we have that x and its

227



A. Characteristic curves and Holmgren’s Theorem

derivatives up to an order N − 1 are zero on the lines z = a and z = b and the
characteristic lines are perpendicular to those lines, we must have that x must be
zero for all t ≥ 0.
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[ÇHvdSS03] M. K. Çamlıbel, W. P. M. H. Heemels, A. J. van der Schaft, and J. M.
Schumacher. Switched networks and complementarity. IEEE Trans.
Circuits Systems I Fund. Theory Appl., 50(8):1036–1046, 2003. Special
issue on switching and systems.

[Col04] M.P. Coleman. An introduction to partial differential equations with
Matlab. Chapman & Hall/CRC, 2004.

[CZ95a] Steven Cox and Enrique Zuazua. The rate at which energy decays
in a string damped at one end. Indiana Univ. Math. J., 44(2):545–573,
1995.

[CZ95b] R.F. Curtain and H.J. Zwart. An Introduction to Infinite-Dimensional
Linear Systems Theory. Springer-Verlag, New York, 1995.

[DL85a] R. Dautray and J.L. Lions. Mathematical Analysis and Numerical
Methods for Science and Technology, volume 2. Springer-Verlag, 1985.

[DL85b] R. Dautray and J.L. Lions. Mathematical Analysis and Numerical
Methods for Science and Technology, volume 3. Springer-Verlag, 1985.

229



Bibliography

[Eri94] A.C. Eringen. A continuum theory of swelling porous elastic soils.
Internat. J. Engrg. Sci., 32(8):1337–1349, 1994.

[ET00] Z. Emirsjlow and S. Townley. From PDEs with boundary control
to the abstract state equation with unbounded input operator: A
tutorial. European J. of Control, 6:27–49, 2000.

[Eva98] Lawrence C. Evans. Partial differential equations, volume 19 of Grad-
uate Studies in Mathematics. American Mathematical Society, Prov-
idence, RI, 1998.

[FA62] L. T. Fan and Y. K. Ahn. Critical evaluation of boundary conditions
for tubular flow reactors. I. and E. C. Process Design and Development,
1(3):190–195, 1962.

[Gea78] Larry Gearhart. Spectral theory for contraction semigroups on
Hilbert space. Trans. Amer. Math. Soc., 236:385–394, 1978.

[GG91] V.I. Gorbachuk and M.L. Gorbachuk. Boundary Value Problems for
Operator Differential Equations. Kluver Academic Publishers, 1991.

[Gol02] G. Golo. Interconnection Structures in Port-Based Modelling: Tools for
Analysis and Simulation. PhD thesis, Univesity of Twente, 2002.

[GR86] V. Girault and P.A. Raviart. Finite element approximation of the
Navier-Stokes equations. Springer-Verlag, 1986.

[GX06] B.Z. Guo and G. Xu. Expansion of solutions in terms of general-
ized eigencfunctions for a hyperbolic system with static boundary
condition. Journal of Functional Analysis, 231:245–268, 2006.
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admissible control operator, 63
admissible observation operator, 63
asymptotic polynomial, 94
asymptotically (or strongly) stable,

62

basis, 85
bilinear form, see canonical symmet-

ric pairing
bond space, 15, 28, 157, 179
boundary control system, 12
boundary port, see ports
boundary trace operator, 26

canonical symmetric pairing, 15, 28,
157

Cauchy matrix, 86
characteristic surface, 46
coercive operator, 13
conjugate variables, 16
controllable system

approximately controllable, 64
exactly controllable in finite

time, 64
exactly controllable in infinite

time, 64
cover, 196

differential operator, 45
principal part, 45
symbol, 45

Dirac structure, 15, 28, 69, 176
dissipation inequality, 19
dissipative system, 19
dual system, 72
dynamic boundary control, 119

effort space, 14, 27, 157, 179
energy preserving, 19
Euler-Bernoulli beam, 2, 116
exponential type, 96
exponentially stable, 62

fixed bed reactor, 4, 9, 148, 172
flow space, 14, 27, 157, 179
formal adjoint, 23
formally skew-adjoint, 7
Fourier transform, 199
fundamental matrix, 85

growth bound, 62

heat conduction, 3
Holmgren’s theorem, 222

impedance conservative, 65
impedance energy preserving, 19,

65
impedance passive, 19, 65

lossless system, 19

maximal domain, 155, 204
minimal, 102
minimal with defect m, 102
multi-index, 44

normal eigenvalue problem, 96

observable system
approximately observable, 64
exactly observable, 64

operator node, 52
output conservative, 74
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output energy preserving, 74
output passive, 74

port-Hamiltonian system, 176
port-Hamiltonian system (PHS), 15
ports

boundary port-variables, 27,
140, 143, 154, 162, 165, 203

distributed port, 177
energy storage port, 176
external ports, 176
internal ports, 176
port-variables, 16, 176
resistive port, 135, 177

positive real (PR), 119
positive semi-definite, 74

Rayleigh beam equation, 2
Riesz basis, 85
Riesz basis with parentheses, 85

scattering conservative, 70
scattering energy preserving, 19, 70
scattering passive, 19, 69
sine-type function, 96
smooth boundary, 196
Sobolev space, 197
stable system, 64
star-like, 207
storage function, 19
strictly input passive, 19
strictly output conservative, 74
strictly output energy preserving, 74
strictly output passive, 19, 74
strictly positive real (SPR), 119
supply rate, 18
suspension system, 3, 185
Swelling porous elastic soils with

fluid saturation, 168
system node, 53

combined observation/feedthrough
operator, 53

control operator, 53
main operator, 53

observation operator, 53
transfer function, 66

Timoshenko beam, 2, 42, 80, 109,
132, 150

trace of order zero, 199
transition matrix, 85
transmission line, 190

vanishing order, 96
variational derivative, 14
vibrating membrane, 204
vibrating string, 1, 6, 12, 34, 97, 109,

152, 185

wave equation, 131
weakly stable, 62
well-posed in the sense of Weiss

(and Salamon), 62

zero, 96
multiple zero, 96
simple zero, 96
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